Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309279743> ?p ?o ?g. }
- W4309279743 endingPage "101919" @default.
- W4309279743 startingPage "101919" @default.
- W4309279743 abstract "Objective. With climatic instability, various ecological disturbances, and human actions threaten the existence of various endangered wildlife species. Therefore, an up-to-date accurate and detailed detection process plays an important role in protecting biodiversity losses, conservation, and ecosystem management. Current state-of-the-art wildlife detection models, however, often lack superior feature extraction capability in complex environments, limiting the development of accurate and reliable detection models. Method. To this end, we present WilDect-YOLO, a deep learning (DL)-based automated high-performance detection model for real-time endangered wildlife detection. In the model, we introduce a residual block in the CSPDarknet53 backbone for strong and discriminating deep spatial features extraction and integrate DenseNet blocks to improve in preserving critical feature information. To enhance receptive field representation, preserve fine-grain localized information, and improve feature fusion, a Spatial Pyramid Pooling (SPP) and modified Path Aggregation Network (PANet) have been implemented that results in superior detection under various challenging environments. Results. Evaluating the model performance in a custom endangered wildlife dataset considering high variability and complex backgrounds, WilDect-YOLO obtains a mean average precision (mAP) value of 96.89%, F1-score of 97.87%, and precision value of 97.18% at a detection rate of 59.20 FPS outperforming current state-of-the-art models. Significance. The present research provides an effective and efficient detection framework addressing the shortcoming of existing DL-based wildlife detection models by providing highly accurate species-level localized bounding box prediction. Current work constitutes a step toward a non-invasive, fully automated animal observation system in real-time in-field applications." @default.
- W4309279743 created "2022-11-25" @default.
- W4309279743 creator A5048556972 @default.
- W4309279743 creator A5068496291 @default.
- W4309279743 creator A5082451378 @default.
- W4309279743 creator A5087514009 @default.
- W4309279743 date "2023-07-01" @default.
- W4309279743 modified "2023-10-18" @default.
- W4309279743 title "WilDect-YOLO: An efficient and robust computer vision-based accurate object localization model for automated endangered wildlife detection" @default.
- W4309279743 cites W1510440550 @default.
- W4309279743 cites W2010851696 @default.
- W4309279743 cites W2023283204 @default.
- W4309279743 cites W2071228375 @default.
- W4309279743 cites W2109255472 @default.
- W4309279743 cites W2116825089 @default.
- W4309279743 cites W2136268617 @default.
- W4309279743 cites W2152274499 @default.
- W4309279743 cites W2236370645 @default.
- W4309279743 cites W2297338375 @default.
- W4309279743 cites W2308318555 @default.
- W4309279743 cites W2590328547 @default.
- W4309279743 cites W2602159426 @default.
- W4309279743 cites W2622826443 @default.
- W4309279743 cites W2730257002 @default.
- W4309279743 cites W2735702545 @default.
- W4309279743 cites W2752508182 @default.
- W4309279743 cites W2769210209 @default.
- W4309279743 cites W2782522152 @default.
- W4309279743 cites W2783231089 @default.
- W4309279743 cites W2790592140 @default.
- W4309279743 cites W2794284562 @default.
- W4309279743 cites W2809699585 @default.
- W4309279743 cites W2810030371 @default.
- W4309279743 cites W2884367402 @default.
- W4309279743 cites W2919115771 @default.
- W4309279743 cites W2921243212 @default.
- W4309279743 cites W2944146608 @default.
- W4309279743 cites W2945020140 @default.
- W4309279743 cites W2945896981 @default.
- W4309279743 cites W2948995641 @default.
- W4309279743 cites W2955737962 @default.
- W4309279743 cites W2956586819 @default.
- W4309279743 cites W2971417618 @default.
- W4309279743 cites W2981769978 @default.
- W4309279743 cites W2983227958 @default.
- W4309279743 cites W2992930668 @default.
- W4309279743 cites W2997320025 @default.
- W4309279743 cites W3000440540 @default.
- W4309279743 cites W3041229120 @default.
- W4309279743 cites W3091800860 @default.
- W4309279743 cites W3113008830 @default.
- W4309279743 cites W3116991906 @default.
- W4309279743 cites W3118731078 @default.
- W4309279743 cites W3121860761 @default.
- W4309279743 cites W3126493952 @default.
- W4309279743 cites W3131780060 @default.
- W4309279743 cites W3134360009 @default.
- W4309279743 cites W3135604819 @default.
- W4309279743 cites W3137171669 @default.
- W4309279743 cites W3149014784 @default.
- W4309279743 cites W3152753009 @default.
- W4309279743 cites W3154570199 @default.
- W4309279743 cites W3156954244 @default.
- W4309279743 cites W3183457194 @default.
- W4309279743 cites W3209952223 @default.
- W4309279743 cites W3210242925 @default.
- W4309279743 cites W4206377271 @default.
- W4309279743 cites W4206720985 @default.
- W4309279743 cites W4206897907 @default.
- W4309279743 cites W4206927580 @default.
- W4309279743 cites W4213050817 @default.
- W4309279743 cites W4221059414 @default.
- W4309279743 cites W4224138952 @default.
- W4309279743 cites W4285391973 @default.
- W4309279743 cites W4293550306 @default.
- W4309279743 cites W4296998972 @default.
- W4309279743 cites W639708223 @default.
- W4309279743 doi "https://doi.org/10.1016/j.ecoinf.2022.101919" @default.
- W4309279743 hasPublicationYear "2023" @default.
- W4309279743 type Work @default.
- W4309279743 citedByCount "28" @default.
- W4309279743 countsByYear W43092797432022 @default.
- W4309279743 countsByYear W43092797432023 @default.
- W4309279743 crossrefType "journal-article" @default.
- W4309279743 hasAuthorship W4309279743A5048556972 @default.
- W4309279743 hasAuthorship W4309279743A5068496291 @default.
- W4309279743 hasAuthorship W4309279743A5082451378 @default.
- W4309279743 hasAuthorship W4309279743A5087514009 @default.
- W4309279743 hasConcept C119857082 @default.
- W4309279743 hasConcept C124101348 @default.
- W4309279743 hasConcept C138885662 @default.
- W4309279743 hasConcept C147366489 @default.
- W4309279743 hasConcept C153180895 @default.
- W4309279743 hasConcept C154945302 @default.
- W4309279743 hasConcept C179345059 @default.
- W4309279743 hasConcept C185933670 @default.
- W4309279743 hasConcept C18903297 @default.
- W4309279743 hasConcept C2776151529 @default.