Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309285418> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4309285418 endingPage "143" @default.
- W4309285418 startingPage "134" @default.
- W4309285418 abstract "Classification of electroencephalography (EEG) signals associated with Steady-state visually evoked potential (SSVEP) is prominent because of its potential in restoring the communication and controlling capability of paralytic people. However, SSVEP signals classification is a challenging task for researchers because of its low signal-to-noise ratio, non-stationary and high dimensional properties. A proficient technique has to be evolved to classify the SSVEP-based EEG data. In recent times, convolutional neural network (CNN) has reached a quantum leap in EEG signal classification. Therefore, the proposed system employs CNN to classify the SSVEP-based EEG signals. Though CNN has proved its proficiency in handling EEG signal classification problems, the calibration of hyperparameters is required to enhance the performance of the model. The calibration of a hyperparameter is a time-consuming task, hence proposed an automated hyperparameter optimization technique using the Red Fox Optimization Algorithm (RFO). The effectiveness of the algorithm is evaluated by comparing it with the performance of Harris Hawk Optimization (HHO), Flower Pollination Algorithm (FPA), Grey Wolf Optimization Algorithm (GWO) and Whale Optimization Algorithm (WOA) based hyperparameter optimized CNN applied to the SSVEP based EEG signals multiclass dataset. The experimental results infer that the proposed algorithm can achieve a testing accuracy of 88.91% which is higher than other comparative algorithms like HHO, FPA, GWO and WOA. The above-mentioned values clearly show that the proposed algorithm achieved competitive performance when compared to the other reported algorithm." @default.
- W4309285418 created "2022-11-25" @default.
- W4309285418 creator A5025955295 @default.
- W4309285418 creator A5055154630 @default.
- W4309285418 creator A5060282711 @default.
- W4309285418 date "2022-11-18" @default.
- W4309285418 modified "2023-09-27" @default.
- W4309285418 title "Classification of SSVEP-EEG signals using CNN and Red Fox Optimization for BCI applications" @default.
- W4309285418 cites W1994855515 @default.
- W4309285418 cites W2061438946 @default.
- W4309285418 cites W2098725211 @default.
- W4309285418 cites W2109008357 @default.
- W4309285418 cites W2143183535 @default.
- W4309285418 cites W2290883490 @default.
- W4309285418 cites W2411469547 @default.
- W4309285418 cites W2439335642 @default.
- W4309285418 cites W2775524044 @default.
- W4309285418 cites W2888728044 @default.
- W4309285418 cites W2919979744 @default.
- W4309285418 cites W2954214015 @default.
- W4309285418 cites W3011131643 @default.
- W4309285418 cites W3024527092 @default.
- W4309285418 cites W3033135512 @default.
- W4309285418 cites W3092123241 @default.
- W4309285418 cites W3113968749 @default.
- W4309285418 cites W3142500255 @default.
- W4309285418 cites W3151154451 @default.
- W4309285418 cites W3165885020 @default.
- W4309285418 cites W3198555339 @default.
- W4309285418 cites W3204608165 @default.
- W4309285418 cites W4220744038 @default.
- W4309285418 cites W4221035317 @default.
- W4309285418 doi "https://doi.org/10.1177/09544119221135714" @default.
- W4309285418 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36398685" @default.
- W4309285418 hasPublicationYear "2022" @default.
- W4309285418 type Work @default.
- W4309285418 citedByCount "1" @default.
- W4309285418 countsByYear W43092854182023 @default.
- W4309285418 crossrefType "journal-article" @default.
- W4309285418 hasAuthorship W4309285418A5025955295 @default.
- W4309285418 hasAuthorship W4309285418A5055154630 @default.
- W4309285418 hasAuthorship W4309285418A5060282711 @default.
- W4309285418 hasConcept C118552586 @default.
- W4309285418 hasConcept C153180895 @default.
- W4309285418 hasConcept C154945302 @default.
- W4309285418 hasConcept C15744967 @default.
- W4309285418 hasConcept C173201364 @default.
- W4309285418 hasConcept C199360897 @default.
- W4309285418 hasConcept C2779843651 @default.
- W4309285418 hasConcept C41008148 @default.
- W4309285418 hasConcept C522805319 @default.
- W4309285418 hasConcept C81363708 @default.
- W4309285418 hasConcept C8642999 @default.
- W4309285418 hasConceptScore W4309285418C118552586 @default.
- W4309285418 hasConceptScore W4309285418C153180895 @default.
- W4309285418 hasConceptScore W4309285418C154945302 @default.
- W4309285418 hasConceptScore W4309285418C15744967 @default.
- W4309285418 hasConceptScore W4309285418C173201364 @default.
- W4309285418 hasConceptScore W4309285418C199360897 @default.
- W4309285418 hasConceptScore W4309285418C2779843651 @default.
- W4309285418 hasConceptScore W4309285418C41008148 @default.
- W4309285418 hasConceptScore W4309285418C522805319 @default.
- W4309285418 hasConceptScore W4309285418C81363708 @default.
- W4309285418 hasConceptScore W4309285418C8642999 @default.
- W4309285418 hasIssue "1" @default.
- W4309285418 hasLocation W43092854181 @default.
- W4309285418 hasLocation W43092854182 @default.
- W4309285418 hasOpenAccess W4309285418 @default.
- W4309285418 hasPrimaryLocation W43092854181 @default.
- W4309285418 hasRelatedWork W2175746458 @default.
- W4309285418 hasRelatedWork W2732542196 @default.
- W4309285418 hasRelatedWork W2900230652 @default.
- W4309285418 hasRelatedWork W2917517086 @default.
- W4309285418 hasRelatedWork W2946091890 @default.
- W4309285418 hasRelatedWork W2969456792 @default.
- W4309285418 hasRelatedWork W2973981959 @default.
- W4309285418 hasRelatedWork W3093612317 @default.
- W4309285418 hasRelatedWork W4283784798 @default.
- W4309285418 hasRelatedWork W4293794957 @default.
- W4309285418 hasVolume "237" @default.
- W4309285418 isParatext "false" @default.
- W4309285418 isRetracted "false" @default.
- W4309285418 workType "article" @default.