Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309288251> ?p ?o ?g. }
- W4309288251 endingPage "285" @default.
- W4309288251 startingPage "275" @default.
- W4309288251 abstract "In this age of the fourth industrial revolution 4.0, the digital world has a plethora of data, including the internet of things, mobile, cybersecurity, social media, forecasts, health data, and so on. The expertise of machine learning and artificial intelligence (AI) is required to soundly evaluate the data and develop related smart and automated applications, These fields use a variety of machine learning techniques including supervised, unsupervised, and reinforcement learning. The objective of the study is to present the role of artificial neural networks and machine learning in utilizing spatial information. Machine learning and AI play an increasingly important role in disaster risk reduction from hazard mapping and forecasting severe occurrences to real-time event detection, situational awareness, and decision assistance. Some of the applications employed in the study to analyze the various ANN domains included weather forecasting, medical diagnosis, aerospace, facial recognition, stock market, social media, signature verification, forensics, robotics, electronics hardware, defense, and seismic data gathering. Machine learning determines the many prediction models for problems involving classification, regression, and clustering using known variables and locations from the training dataset, spatial data that is based on tabular data creates different observations that are geographically related to one another for unknown factors and places. The study presents that the Recurrent neural network and convolutional neural network are the best method in spatial information processing, healthcare, and weather forecasting with greater than 90% accuracy." @default.
- W4309288251 created "2022-11-25" @default.
- W4309288251 creator A5012552959 @default.
- W4309288251 creator A5017709713 @default.
- W4309288251 creator A5023926588 @default.
- W4309288251 date "2022-11-18" @default.
- W4309288251 modified "2023-10-14" @default.
- W4309288251 title "The role of artificial neural network and machine learning in utilizing spatial information" @default.
- W4309288251 cites W1503196281 @default.
- W4309288251 cites W1539953834 @default.
- W4309288251 cites W1980836123 @default.
- W4309288251 cites W1989628336 @default.
- W4309288251 cites W2005570377 @default.
- W4309288251 cites W2020643828 @default.
- W4309288251 cites W2027442956 @default.
- W4309288251 cites W2053615983 @default.
- W4309288251 cites W2053786220 @default.
- W4309288251 cites W2055130908 @default.
- W4309288251 cites W2059852492 @default.
- W4309288251 cites W2075795701 @default.
- W4309288251 cites W2099822944 @default.
- W4309288251 cites W2115699786 @default.
- W4309288251 cites W2133299437 @default.
- W4309288251 cites W2137687977 @default.
- W4309288251 cites W2160724530 @default.
- W4309288251 cites W2173259274 @default.
- W4309288251 cites W2290432223 @default.
- W4309288251 cites W2542516223 @default.
- W4309288251 cites W2791321831 @default.
- W4309288251 cites W2885177002 @default.
- W4309288251 cites W2897688604 @default.
- W4309288251 cites W2902280286 @default.
- W4309288251 cites W2946012503 @default.
- W4309288251 cites W2966617151 @default.
- W4309288251 cites W2970090765 @default.
- W4309288251 cites W2971415260 @default.
- W4309288251 cites W2981072058 @default.
- W4309288251 cites W2998526951 @default.
- W4309288251 cites W3006239177 @default.
- W4309288251 cites W3082145142 @default.
- W4309288251 cites W3083458720 @default.
- W4309288251 cites W3084021717 @default.
- W4309288251 cites W3095389414 @default.
- W4309288251 cites W3131219847 @default.
- W4309288251 cites W3138650366 @default.
- W4309288251 cites W3173602000 @default.
- W4309288251 cites W3180686387 @default.
- W4309288251 cites W3187058879 @default.
- W4309288251 cites W3199582773 @default.
- W4309288251 cites W3205939503 @default.
- W4309288251 cites W3209750384 @default.
- W4309288251 cites W3211443170 @default.
- W4309288251 cites W417143071 @default.
- W4309288251 cites W4200467464 @default.
- W4309288251 cites W4205256556 @default.
- W4309288251 cites W4205607843 @default.
- W4309288251 cites W4206711222 @default.
- W4309288251 doi "https://doi.org/10.1007/s41324-022-00494-x" @default.
- W4309288251 hasPublicationYear "2022" @default.
- W4309288251 type Work @default.
- W4309288251 citedByCount "3" @default.
- W4309288251 countsByYear W43092882512023 @default.
- W4309288251 crossrefType "journal-article" @default.
- W4309288251 hasAuthorship W4309288251A5012552959 @default.
- W4309288251 hasAuthorship W4309288251A5017709713 @default.
- W4309288251 hasAuthorship W4309288251A5023926588 @default.
- W4309288251 hasBestOaLocation W43092882511 @default.
- W4309288251 hasConcept C108583219 @default.
- W4309288251 hasConcept C119857082 @default.
- W4309288251 hasConcept C127413603 @default.
- W4309288251 hasConcept C136197465 @default.
- W4309288251 hasConcept C145804949 @default.
- W4309288251 hasConcept C146978453 @default.
- W4309288251 hasConcept C154945302 @default.
- W4309288251 hasConcept C41008148 @default.
- W4309288251 hasConcept C50644808 @default.
- W4309288251 hasConcept C73555534 @default.
- W4309288251 hasConcept C8038995 @default.
- W4309288251 hasConcept C81363708 @default.
- W4309288251 hasConceptScore W4309288251C108583219 @default.
- W4309288251 hasConceptScore W4309288251C119857082 @default.
- W4309288251 hasConceptScore W4309288251C127413603 @default.
- W4309288251 hasConceptScore W4309288251C136197465 @default.
- W4309288251 hasConceptScore W4309288251C145804949 @default.
- W4309288251 hasConceptScore W4309288251C146978453 @default.
- W4309288251 hasConceptScore W4309288251C154945302 @default.
- W4309288251 hasConceptScore W4309288251C41008148 @default.
- W4309288251 hasConceptScore W4309288251C50644808 @default.
- W4309288251 hasConceptScore W4309288251C73555534 @default.
- W4309288251 hasConceptScore W4309288251C8038995 @default.
- W4309288251 hasConceptScore W4309288251C81363708 @default.
- W4309288251 hasIssue "3" @default.
- W4309288251 hasLocation W43092882511 @default.
- W4309288251 hasOpenAccess W4309288251 @default.
- W4309288251 hasPrimaryLocation W43092882511 @default.
- W4309288251 hasRelatedWork W2415747217 @default.
- W4309288251 hasRelatedWork W3024912289 @default.
- W4309288251 hasRelatedWork W3029198973 @default.