Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309293990> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4309293990 endingPage "216" @default.
- W4309293990 startingPage "206" @default.
- W4309293990 abstract "In view of the current research seldom consider the multi-scale characteristics of network traffic, which may lead to an inaccurate classification of anomalies and a high false alarm rate. In this paper, a network traffic anomaly detection method based on the multi-scale residual classifier (MSRC) is proposed. We use sliding windows to divide the network traffic into subsequences with different observation scales, use the wavelet transform technology to obtain the time–frequency information of each subsequence on multiple decomposition scales, design a stacked automatic encoder (SAE) to learn the distribution of input data, calculate the reconstruction error vector by using the constructed feature space, and learn the feature information of different scales in the reconstruction error vector by using the multipath residual group, and complete traffic anomaly detection through the lightweight classifier. Experimental results show that the detection performance of the proposed method for abnormal network traffic is improved compared with the traditional method. It is proved that large observation scales and more transformation scales have positive effects on discovering the potential diversity information in the original network traffic." @default.
- W4309293990 created "2022-11-25" @default.
- W4309293990 creator A5005533689 @default.
- W4309293990 creator A5027211323 @default.
- W4309293990 creator A5030691366 @default.
- W4309293990 date "2023-01-01" @default.
- W4309293990 modified "2023-10-01" @default.
- W4309293990 title "Network traffic anomaly detection method based on multi-scale residual classifier" @default.
- W4309293990 cites W2136922672 @default.
- W4309293990 cites W2178263762 @default.
- W4309293990 cites W2331481034 @default.
- W4309293990 cites W2625574821 @default.
- W4309293990 cites W2797475117 @default.
- W4309293990 cites W2954508354 @default.
- W4309293990 cites W2963178695 @default.
- W4309293990 cites W2985152984 @default.
- W4309293990 cites W3088673468 @default.
- W4309293990 cites W3119470331 @default.
- W4309293990 cites W4206268729 @default.
- W4309293990 cites W4210793970 @default.
- W4309293990 cites W4220996174 @default.
- W4309293990 cites W4280618835 @default.
- W4309293990 cites W4283793177 @default.
- W4309293990 cites W4285106051 @default.
- W4309293990 doi "https://doi.org/10.1016/j.comcom.2022.10.024" @default.
- W4309293990 hasPublicationYear "2023" @default.
- W4309293990 type Work @default.
- W4309293990 citedByCount "4" @default.
- W4309293990 countsByYear W43092939902023 @default.
- W4309293990 crossrefType "journal-article" @default.
- W4309293990 hasAuthorship W4309293990A5005533689 @default.
- W4309293990 hasAuthorship W4309293990A5027211323 @default.
- W4309293990 hasAuthorship W4309293990A5030691366 @default.
- W4309293990 hasConcept C11413529 @default.
- W4309293990 hasConcept C124101348 @default.
- W4309293990 hasConcept C153180895 @default.
- W4309293990 hasConcept C154945302 @default.
- W4309293990 hasConcept C155512373 @default.
- W4309293990 hasConcept C41008148 @default.
- W4309293990 hasConcept C47432892 @default.
- W4309293990 hasConcept C739882 @default.
- W4309293990 hasConcept C83665646 @default.
- W4309293990 hasConceptScore W4309293990C11413529 @default.
- W4309293990 hasConceptScore W4309293990C124101348 @default.
- W4309293990 hasConceptScore W4309293990C153180895 @default.
- W4309293990 hasConceptScore W4309293990C154945302 @default.
- W4309293990 hasConceptScore W4309293990C155512373 @default.
- W4309293990 hasConceptScore W4309293990C41008148 @default.
- W4309293990 hasConceptScore W4309293990C47432892 @default.
- W4309293990 hasConceptScore W4309293990C739882 @default.
- W4309293990 hasConceptScore W4309293990C83665646 @default.
- W4309293990 hasFunder F4320321540 @default.
- W4309293990 hasFunder F4320335777 @default.
- W4309293990 hasLocation W43092939901 @default.
- W4309293990 hasOpenAccess W4309293990 @default.
- W4309293990 hasPrimaryLocation W43092939901 @default.
- W4309293990 hasRelatedWork W2055384367 @default.
- W4309293990 hasRelatedWork W2060018656 @default.
- W4309293990 hasRelatedWork W2076520961 @default.
- W4309293990 hasRelatedWork W2293915134 @default.
- W4309293990 hasRelatedWork W2405477502 @default.
- W4309293990 hasRelatedWork W2541950815 @default.
- W4309293990 hasRelatedWork W2543670224 @default.
- W4309293990 hasRelatedWork W2793367532 @default.
- W4309293990 hasRelatedWork W3047965787 @default.
- W4309293990 hasRelatedWork W377926767 @default.
- W4309293990 hasVolume "198" @default.
- W4309293990 isParatext "false" @default.
- W4309293990 isRetracted "false" @default.
- W4309293990 workType "article" @default.