Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309303702> ?p ?o ?g. }
- W4309303702 endingPage "358" @default.
- W4309303702 startingPage "335" @default.
- W4309303702 abstract "Changes in the quantity of solar energy reaching the Earth's surface have a straight influence on the climate as air temperatures have their origin in the absorption of radiant energy from the Sun. Solar radiation is the largest and purest source of renewable energy on earth with an extremely low carbon footprint required for power generation. Knowing expected solar radiation beforehand has a great utility not only from the economic perspective but also from the social perspective, especially for the countries like UAE which are part of the Sun Belt. The main objective of this paper is to explore three different univariate time series modeling techniques, namely: seasonal auto-regressive integrated moving average (SARIMA), K-nearest neighbors (KNN) and recursive neural network-long short term memory (RNN-LSTM) to predict the monthly average solar radiation per day in UAE. The best model was selected based on the root mean square error on training as well as testing datasets. The results of this study show that for solar radiation forecasting the machine learning techniques RNN-LSTM and KNN significantly outperform the classical time series modeling technique of SARIMA. While RNN-LSTM and KNN perform almost equally well, RNN-LSTM has a slight edge over KNN for both short-term and long-term forecasting. The findings of this paper throw light on how different univariate time series forecasting models perform in predicting solar radiation, which depends on multiple tangible and intangible atmospheric parameters which are difficult to capture or not readily available historically. Easy, quick, and accurate methods for short-term and long-term solar radiation prediction would help UAE (and other countries in Sun-Belt) to effectively manage the sporadic nature of solar radiation due to climate changes which sometimes compromise the functioning of electricity grids and in turn the electricity supply of photovoltaic plants." @default.
- W4309303702 created "2022-11-25" @default.
- W4309303702 creator A5027342905 @default.
- W4309303702 creator A5077931571 @default.
- W4309303702 date "2023-01-01" @default.
- W4309303702 modified "2023-10-16" @default.
- W4309303702 title "Climate change: Prediction of solar radiation using advanced machine learning techniques" @default.
- W4309303702 cites W1843732095 @default.
- W4309303702 cites W1967516918 @default.
- W4309303702 cites W1981587612 @default.
- W4309303702 cites W1987302169 @default.
- W4309303702 cites W1988510559 @default.
- W4309303702 cites W1993724767 @default.
- W4309303702 cites W1998485417 @default.
- W4309303702 cites W2004012112 @default.
- W4309303702 cites W2025003514 @default.
- W4309303702 cites W2029175360 @default.
- W4309303702 cites W2029888179 @default.
- W4309303702 cites W2032007905 @default.
- W4309303702 cites W2042105177 @default.
- W4309303702 cites W2049329129 @default.
- W4309303702 cites W2050999277 @default.
- W4309303702 cites W2057326134 @default.
- W4309303702 cites W2070250746 @default.
- W4309303702 cites W2090287545 @default.
- W4309303702 cites W2105688553 @default.
- W4309303702 cites W2191350679 @default.
- W4309303702 cites W2318515285 @default.
- W4309303702 cites W2339636646 @default.
- W4309303702 cites W2528056888 @default.
- W4309303702 cites W2984376566 @default.
- W4309303702 cites W2998639137 @default.
- W4309303702 cites W3005829171 @default.
- W4309303702 cites W3015908511 @default.
- W4309303702 cites W3016414288 @default.
- W4309303702 cites W3022787740 @default.
- W4309303702 cites W3047319676 @default.
- W4309303702 cites W3082461916 @default.
- W4309303702 cites W3099865851 @default.
- W4309303702 cites W3110443213 @default.
- W4309303702 cites W3111435301 @default.
- W4309303702 cites W3118372338 @default.
- W4309303702 cites W3124635350 @default.
- W4309303702 cites W3137688634 @default.
- W4309303702 cites W3167371228 @default.
- W4309303702 cites W4210420951 @default.
- W4309303702 doi "https://doi.org/10.1016/b978-0-323-99714-0.00017-0" @default.
- W4309303702 hasPublicationYear "2023" @default.
- W4309303702 type Work @default.
- W4309303702 citedByCount "2" @default.
- W4309303702 countsByYear W43093037022023 @default.
- W4309303702 crossrefType "book-chapter" @default.
- W4309303702 hasAuthorship W4309303702A5027342905 @default.
- W4309303702 hasAuthorship W4309303702A5077931571 @default.
- W4309303702 hasConcept C105795698 @default.
- W4309303702 hasConcept C119599485 @default.
- W4309303702 hasConcept C119857082 @default.
- W4309303702 hasConcept C127413603 @default.
- W4309303702 hasConcept C139945424 @default.
- W4309303702 hasConcept C147168706 @default.
- W4309303702 hasConcept C151406439 @default.
- W4309303702 hasConcept C153294291 @default.
- W4309303702 hasConcept C154945302 @default.
- W4309303702 hasConcept C161584116 @default.
- W4309303702 hasConcept C188573790 @default.
- W4309303702 hasConcept C199163554 @default.
- W4309303702 hasConcept C205649164 @default.
- W4309303702 hasConcept C33923547 @default.
- W4309303702 hasConcept C39432304 @default.
- W4309303702 hasConcept C41008148 @default.
- W4309303702 hasConcept C50644808 @default.
- W4309303702 hasConceptScore W4309303702C105795698 @default.
- W4309303702 hasConceptScore W4309303702C119599485 @default.
- W4309303702 hasConceptScore W4309303702C119857082 @default.
- W4309303702 hasConceptScore W4309303702C127413603 @default.
- W4309303702 hasConceptScore W4309303702C139945424 @default.
- W4309303702 hasConceptScore W4309303702C147168706 @default.
- W4309303702 hasConceptScore W4309303702C151406439 @default.
- W4309303702 hasConceptScore W4309303702C153294291 @default.
- W4309303702 hasConceptScore W4309303702C154945302 @default.
- W4309303702 hasConceptScore W4309303702C161584116 @default.
- W4309303702 hasConceptScore W4309303702C188573790 @default.
- W4309303702 hasConceptScore W4309303702C199163554 @default.
- W4309303702 hasConceptScore W4309303702C205649164 @default.
- W4309303702 hasConceptScore W4309303702C33923547 @default.
- W4309303702 hasConceptScore W4309303702C39432304 @default.
- W4309303702 hasConceptScore W4309303702C41008148 @default.
- W4309303702 hasConceptScore W4309303702C50644808 @default.
- W4309303702 hasLocation W43093037021 @default.
- W4309303702 hasOpenAccess W4309303702 @default.
- W4309303702 hasPrimaryLocation W43093037021 @default.
- W4309303702 hasRelatedWork W2305568609 @default.
- W4309303702 hasRelatedWork W2613356142 @default.
- W4309303702 hasRelatedWork W2741589215 @default.
- W4309303702 hasRelatedWork W2766673981 @default.
- W4309303702 hasRelatedWork W2909813883 @default.
- W4309303702 hasRelatedWork W2995227436 @default.
- W4309303702 hasRelatedWork W3005055051 @default.