Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309306075> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4309306075 endingPage "15104" @default.
- W4309306075 startingPage "15104" @default.
- W4309306075 abstract "Multi-regional waterworks are large-scale facilities for supplying tap water to the public and industrial parks, and interruptions in the water supply due to leaks result in massive social and economic damages. Accordingly, real-time, around-the-clock accident monitoring is necessary to minimize secondary damage. In the present study, a section of a large-scale waterworks transmission mains system with frequent changes in its physical boundaries was defined for sensor network map-based deep learning input and output. A deep neural network (DNN)-based pressure prediction model, able to detect pipe burst accidents in real-time using short-term data collected over periods within 1 month, was developed. A sensor network map refers to a sensor-based hierarchy diagram, which is expressed using a hydraulically divided area. A hydraulically independent area can be determined using known value information (e.g., the known flow, pressure, and total head) in a complex water supply system. The input data used for the deep learning model training were: the water levels measured at 1 min intervals, flow rates, ambient pressure, pump operation state, and electric valve opening data. To verify the developed methodology, two sets of real-world data from past burst accidents in different multi-regional waterworks systems were used. The results showed that the difference between the pressure as measured by pressure meters and an estimated pressure was extremely small before an accident, and that the difference would reach a maximum at the time point when an accident occurs. It was confirmed that an approximate estimation of an accident occurrence and accident location could be estimated based on predicted pressure meter data. The developed methodology predicts a mutual influence between pressure meters and, therefore, has the advantage of not requiring past data covering long time periods. The proposed methodology can be applied immediately and used in currently operational large-scale water transmission main systems." @default.
- W4309306075 created "2022-11-26" @default.
- W4309306075 creator A5019025299 @default.
- W4309306075 creator A5034564425 @default.
- W4309306075 creator A5039255505 @default.
- W4309306075 creator A5024637841 @default.
- W4309306075 date "2022-11-15" @default.
- W4309306075 modified "2023-10-14" @default.
- W4309306075 title "Development of the Methodology for Pipe Burst Detection in Multi-Regional Water Supply Networks Using Sensor Network Maps and Deep Neural Networks" @default.
- W4309306075 cites W1982494603 @default.
- W4309306075 cites W1998194860 @default.
- W4309306075 cites W2009276169 @default.
- W4309306075 cites W2009319005 @default.
- W4309306075 cites W2032045696 @default.
- W4309306075 cites W2042204969 @default.
- W4309306075 cites W2070096548 @default.
- W4309306075 cites W2070188654 @default.
- W4309306075 cites W2070966459 @default.
- W4309306075 cites W2169866162 @default.
- W4309306075 cites W2971689172 @default.
- W4309306075 cites W3013117101 @default.
- W4309306075 cites W3107137416 @default.
- W4309306075 cites W3124171966 @default.
- W4309306075 cites W3176921623 @default.
- W4309306075 cites W3193828983 @default.
- W4309306075 cites W3206760447 @default.
- W4309306075 cites W4224083560 @default.
- W4309306075 cites W4288032558 @default.
- W4309306075 doi "https://doi.org/10.3390/su142215104" @default.
- W4309306075 hasPublicationYear "2022" @default.
- W4309306075 type Work @default.
- W4309306075 citedByCount "0" @default.
- W4309306075 crossrefType "journal-article" @default.
- W4309306075 hasAuthorship W4309306075A5019025299 @default.
- W4309306075 hasAuthorship W4309306075A5024637841 @default.
- W4309306075 hasAuthorship W4309306075A5034564425 @default.
- W4309306075 hasAuthorship W4309306075A5039255505 @default.
- W4309306075 hasBestOaLocation W43093060751 @default.
- W4309306075 hasConcept C108583219 @default.
- W4309306075 hasConcept C127413603 @default.
- W4309306075 hasConcept C1284942 @default.
- W4309306075 hasConcept C154945302 @default.
- W4309306075 hasConcept C205649164 @default.
- W4309306075 hasConcept C39432304 @default.
- W4309306075 hasConcept C41008148 @default.
- W4309306075 hasConcept C41325743 @default.
- W4309306075 hasConcept C50644808 @default.
- W4309306075 hasConcept C58640448 @default.
- W4309306075 hasConcept C78519656 @default.
- W4309306075 hasConcept C79403827 @default.
- W4309306075 hasConcept C87717796 @default.
- W4309306075 hasConcept C97053079 @default.
- W4309306075 hasConceptScore W4309306075C108583219 @default.
- W4309306075 hasConceptScore W4309306075C127413603 @default.
- W4309306075 hasConceptScore W4309306075C1284942 @default.
- W4309306075 hasConceptScore W4309306075C154945302 @default.
- W4309306075 hasConceptScore W4309306075C205649164 @default.
- W4309306075 hasConceptScore W4309306075C39432304 @default.
- W4309306075 hasConceptScore W4309306075C41008148 @default.
- W4309306075 hasConceptScore W4309306075C41325743 @default.
- W4309306075 hasConceptScore W4309306075C50644808 @default.
- W4309306075 hasConceptScore W4309306075C58640448 @default.
- W4309306075 hasConceptScore W4309306075C78519656 @default.
- W4309306075 hasConceptScore W4309306075C79403827 @default.
- W4309306075 hasConceptScore W4309306075C87717796 @default.
- W4309306075 hasConceptScore W4309306075C97053079 @default.
- W4309306075 hasFunder F4320316038 @default.
- W4309306075 hasIssue "22" @default.
- W4309306075 hasLocation W43093060751 @default.
- W4309306075 hasLocation W43093060752 @default.
- W4309306075 hasOpenAccess W4309306075 @default.
- W4309306075 hasPrimaryLocation W43093060751 @default.
- W4309306075 hasRelatedWork W1519398290 @default.
- W4309306075 hasRelatedWork W2360518045 @default.
- W4309306075 hasRelatedWork W2363207358 @default.
- W4309306075 hasRelatedWork W2386387936 @default.
- W4309306075 hasRelatedWork W2394386606 @default.
- W4309306075 hasRelatedWork W2612884270 @default.
- W4309306075 hasRelatedWork W2885599165 @default.
- W4309306075 hasRelatedWork W2899084033 @default.
- W4309306075 hasRelatedWork W3176779650 @default.
- W4309306075 hasRelatedWork W4229456138 @default.
- W4309306075 hasVolume "14" @default.
- W4309306075 isParatext "false" @default.
- W4309306075 isRetracted "false" @default.
- W4309306075 workType "article" @default.