Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309308809> ?p ?o ?g. }
- W4309308809 endingPage "8543" @default.
- W4309308809 startingPage "8543" @default.
- W4309308809 abstract "Reliable energy consumption forecasting is essential for building energy efficiency improvement. Regression models are simple and effective for data analysis, but their practical applications are limited by the low prediction accuracy under ever-changing building operation conditions. To address this challenge, a Joinpoint–Multiple Linear Regression (JP–MLR) model is proposed in this study, based on the investigation of the daily electricity usage data of 8 apartment complexes located within a university in Xiamen, China. The univariate model is first built using the Joinpoint Regression (JPR) method, and then the remaining residuals are evaluated using the Multiple Linear Regression (MLR) method. The model contains six explanatory variables, three of which are continuous (mean outdoor air temperature, mean relative humidity, and temperature amplitude) and three of which are categorical (gender, holiday index, and sunny day index). The performance of the JP–MLR model is compared to that of the other four data-driven algorithm models: JPR, MLR, Back Propagation (BP) neural network, and Random Forest (RF). The JP–MLR model, which has an R2 value of 95.77%, has superior prediction performance when compared to the traditional regression-based JPR model and MLR model. It also performs better than the machine learning-based BP model and is identical to that of the RF model. This demonstrates that the JP–MLR model has satisfactory prediction performance and offers building operators an effective prediction tool. The proposed research method also provides also serves as a reference for electricity consumption analysis in other types of buildings." @default.
- W4309308809 created "2022-11-26" @default.
- W4309308809 creator A5011026674 @default.
- W4309308809 creator A5069584056 @default.
- W4309308809 creator A5072821495 @default.
- W4309308809 date "2022-11-15" @default.
- W4309308809 modified "2023-09-25" @default.
- W4309308809 title "Prediction of Building Electricity Consumption Based on Joinpoint−Multiple Linear Regression" @default.
- W4309308809 cites W1823350575 @default.
- W4309308809 cites W1969081718 @default.
- W4309308809 cites W1988882942 @default.
- W4309308809 cites W1991277158 @default.
- W4309308809 cites W2037767895 @default.
- W4309308809 cites W2060849819 @default.
- W4309308809 cites W2077618811 @default.
- W4309308809 cites W2088542866 @default.
- W4309308809 cites W2129959438 @default.
- W4309308809 cites W2161321743 @default.
- W4309308809 cites W2218565324 @default.
- W4309308809 cites W2240084696 @default.
- W4309308809 cites W2301256248 @default.
- W4309308809 cites W2338419920 @default.
- W4309308809 cites W2395495148 @default.
- W4309308809 cites W2498686302 @default.
- W4309308809 cites W2517863449 @default.
- W4309308809 cites W2764107511 @default.
- W4309308809 cites W2788201032 @default.
- W4309308809 cites W2802491896 @default.
- W4309308809 cites W2945223169 @default.
- W4309308809 cites W2964780434 @default.
- W4309308809 cites W3007319757 @default.
- W4309308809 cites W3046886259 @default.
- W4309308809 cites W3091958163 @default.
- W4309308809 cites W3097532502 @default.
- W4309308809 cites W3160603218 @default.
- W4309308809 cites W3164666810 @default.
- W4309308809 cites W3189968552 @default.
- W4309308809 cites W4210445488 @default.
- W4309308809 cites W4212883601 @default.
- W4309308809 cites W4221120105 @default.
- W4309308809 cites W4280509165 @default.
- W4309308809 cites W4281492449 @default.
- W4309308809 cites W4293386070 @default.
- W4309308809 cites W774878644 @default.
- W4309308809 doi "https://doi.org/10.3390/en15228543" @default.
- W4309308809 hasPublicationYear "2022" @default.
- W4309308809 type Work @default.
- W4309308809 citedByCount "1" @default.
- W4309308809 countsByYear W43093088092023 @default.
- W4309308809 crossrefType "journal-article" @default.
- W4309308809 hasAuthorship W4309308809A5011026674 @default.
- W4309308809 hasAuthorship W4309308809A5069584056 @default.
- W4309308809 hasAuthorship W4309308809A5072821495 @default.
- W4309308809 hasBestOaLocation W43093088091 @default.
- W4309308809 hasConcept C105795698 @default.
- W4309308809 hasConcept C119599485 @default.
- W4309308809 hasConcept C119857082 @default.
- W4309308809 hasConcept C124101348 @default.
- W4309308809 hasConcept C127413603 @default.
- W4309308809 hasConcept C136764020 @default.
- W4309308809 hasConcept C149782125 @default.
- W4309308809 hasConcept C152877465 @default.
- W4309308809 hasConcept C161584116 @default.
- W4309308809 hasConcept C163175372 @default.
- W4309308809 hasConcept C169258074 @default.
- W4309308809 hasConcept C199163554 @default.
- W4309308809 hasConcept C206658404 @default.
- W4309308809 hasConcept C2777382242 @default.
- W4309308809 hasConcept C33923547 @default.
- W4309308809 hasConcept C41008148 @default.
- W4309308809 hasConcept C45804977 @default.
- W4309308809 hasConcept C48921125 @default.
- W4309308809 hasConcept C50644808 @default.
- W4309308809 hasConceptScore W4309308809C105795698 @default.
- W4309308809 hasConceptScore W4309308809C119599485 @default.
- W4309308809 hasConceptScore W4309308809C119857082 @default.
- W4309308809 hasConceptScore W4309308809C124101348 @default.
- W4309308809 hasConceptScore W4309308809C127413603 @default.
- W4309308809 hasConceptScore W4309308809C136764020 @default.
- W4309308809 hasConceptScore W4309308809C149782125 @default.
- W4309308809 hasConceptScore W4309308809C152877465 @default.
- W4309308809 hasConceptScore W4309308809C161584116 @default.
- W4309308809 hasConceptScore W4309308809C163175372 @default.
- W4309308809 hasConceptScore W4309308809C169258074 @default.
- W4309308809 hasConceptScore W4309308809C199163554 @default.
- W4309308809 hasConceptScore W4309308809C206658404 @default.
- W4309308809 hasConceptScore W4309308809C2777382242 @default.
- W4309308809 hasConceptScore W4309308809C33923547 @default.
- W4309308809 hasConceptScore W4309308809C41008148 @default.
- W4309308809 hasConceptScore W4309308809C45804977 @default.
- W4309308809 hasConceptScore W4309308809C48921125 @default.
- W4309308809 hasConceptScore W4309308809C50644808 @default.
- W4309308809 hasFunder F4320321001 @default.
- W4309308809 hasIssue "22" @default.
- W4309308809 hasLocation W43093088091 @default.
- W4309308809 hasLocation W43093088092 @default.
- W4309308809 hasOpenAccess W4309308809 @default.
- W4309308809 hasPrimaryLocation W43093088091 @default.