Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309309658> ?p ?o ?g. }
- W4309309658 endingPage "162" @default.
- W4309309658 startingPage "162" @default.
- W4309309658 abstract "This study proposed a two-stage method, which combines a convolutional neural network (CNN) with the continuous wavelet transform (CWT) for multiclass modulation classification. The modulation signals’ time-frequency information was first extracted using CWT as a data source. The convolutional neural network was fed input from 2D pictures. The second step included feeding the proposed algorithm the 2D time-frequency information it had obtained in order to classify the different kinds of modulations. Six different types of modulations, including amplitude-shift keying (ASK), phase-shift keying (PSK), frequency-shift keying (FSK), quadrature amplitude-shift keying (QASK), quadrature phase-shift keying (QPSK), and quadrature frequency-shift keying (QFSK), are automatically recognized using a new digital modulation classification model between 0 and 25 dB SNRs. Modulation types are used in satellite communication, underwater communication, and military communication. In comparison with earlier research, the recommended convolutional neural network learning model performs better in the presence of varying noise levels." @default.
- W4309309658 created "2022-11-26" @default.
- W4309309658 creator A5005507077 @default.
- W4309309658 creator A5015492641 @default.
- W4309309658 creator A5016760409 @default.
- W4309309658 creator A5023371059 @default.
- W4309309658 creator A5031765031 @default.
- W4309309658 creator A5032948428 @default.
- W4309309658 creator A5034896032 @default.
- W4309309658 creator A5044200538 @default.
- W4309309658 creator A5085011671 @default.
- W4309309658 date "2022-11-15" @default.
- W4309309658 modified "2023-10-15" @default.
- W4309309658 title "Robust Automatic Modulation Classification Using Convolutional Deep Neural Network Based on Scalogram Information" @default.
- W4309309658 cites W2560264561 @default.
- W4309309658 cites W2598475438 @default.
- W4309309658 cites W2790162610 @default.
- W4309309658 cites W2790452209 @default.
- W4309309658 cites W2898853884 @default.
- W4309309658 cites W2913680020 @default.
- W4309309658 cites W2917677817 @default.
- W4309309658 cites W2946364249 @default.
- W4309309658 cites W2999371818 @default.
- W4309309658 cites W3000943722 @default.
- W4309309658 cites W3003174479 @default.
- W4309309658 cites W3011724393 @default.
- W4309309658 cites W3013935691 @default.
- W4309309658 cites W3015903302 @default.
- W4309309658 cites W3022121429 @default.
- W4309309658 cites W3038840877 @default.
- W4309309658 cites W3060435609 @default.
- W4309309658 cites W3098699535 @default.
- W4309309658 cites W3099434629 @default.
- W4309309658 cites W3101503122 @default.
- W4309309658 cites W3104028856 @default.
- W4309309658 cites W3123326053 @default.
- W4309309658 cites W3125092435 @default.
- W4309309658 cites W3131724164 @default.
- W4309309658 cites W3136671356 @default.
- W4309309658 cites W3155899199 @default.
- W4309309658 cites W3168231499 @default.
- W4309309658 cites W3174334351 @default.
- W4309309658 cites W3182574128 @default.
- W4309309658 cites W3201395422 @default.
- W4309309658 cites W3212967455 @default.
- W4309309658 cites W4205172125 @default.
- W4309309658 cites W4206339405 @default.
- W4309309658 cites W4283319507 @default.
- W4309309658 doi "https://doi.org/10.3390/computers11110162" @default.
- W4309309658 hasPublicationYear "2022" @default.
- W4309309658 type Work @default.
- W4309309658 citedByCount "2" @default.
- W4309309658 countsByYear W43093096582023 @default.
- W4309309658 crossrefType "journal-article" @default.
- W4309309658 hasAuthorship W4309309658A5005507077 @default.
- W4309309658 hasAuthorship W4309309658A5015492641 @default.
- W4309309658 hasAuthorship W4309309658A5016760409 @default.
- W4309309658 hasAuthorship W4309309658A5023371059 @default.
- W4309309658 hasAuthorship W4309309658A5031765031 @default.
- W4309309658 hasAuthorship W4309309658A5032948428 @default.
- W4309309658 hasAuthorship W4309309658A5034896032 @default.
- W4309309658 hasAuthorship W4309309658A5044200538 @default.
- W4309309658 hasAuthorship W4309309658A5085011671 @default.
- W4309309658 hasBestOaLocation W43093096581 @default.
- W4309309658 hasConcept C121332964 @default.
- W4309309658 hasConcept C123079801 @default.
- W4309309658 hasConcept C127162648 @default.
- W4309309658 hasConcept C127240579 @default.
- W4309309658 hasConcept C153180895 @default.
- W4309309658 hasConcept C154945302 @default.
- W4309309658 hasConcept C163996819 @default.
- W4309309658 hasConcept C186378180 @default.
- W4309309658 hasConcept C195251586 @default.
- W4309309658 hasConcept C24890656 @default.
- W4309309658 hasConcept C2776542216 @default.
- W4309309658 hasConcept C2777973058 @default.
- W4309309658 hasConcept C28490314 @default.
- W4309309658 hasConcept C32409245 @default.
- W4309309658 hasConcept C343090 @default.
- W4309309658 hasConcept C41008148 @default.
- W4309309658 hasConcept C47432892 @default.
- W4309309658 hasConcept C55857970 @default.
- W4309309658 hasConcept C56296756 @default.
- W4309309658 hasConcept C76155785 @default.
- W4309309658 hasConcept C81363708 @default.
- W4309309658 hasConceptScore W4309309658C121332964 @default.
- W4309309658 hasConceptScore W4309309658C123079801 @default.
- W4309309658 hasConceptScore W4309309658C127162648 @default.
- W4309309658 hasConceptScore W4309309658C127240579 @default.
- W4309309658 hasConceptScore W4309309658C153180895 @default.
- W4309309658 hasConceptScore W4309309658C154945302 @default.
- W4309309658 hasConceptScore W4309309658C163996819 @default.
- W4309309658 hasConceptScore W4309309658C186378180 @default.
- W4309309658 hasConceptScore W4309309658C195251586 @default.
- W4309309658 hasConceptScore W4309309658C24890656 @default.
- W4309309658 hasConceptScore W4309309658C2776542216 @default.
- W4309309658 hasConceptScore W4309309658C2777973058 @default.
- W4309309658 hasConceptScore W4309309658C28490314 @default.