Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309315093> ?p ?o ?g. }
- W4309315093 abstract "The emergence of multimodal medical imaging technology greatly increases the accuracy of clinical diagnosis and etiological analysis. Nevertheless, each medical imaging modal unavoidably has its own limitations, so the fusion of multimodal medical images may become an effective solution. In this paper, a novel fusion method on the multimodal medical images exploiting convolutional neural network (CNN) and extreme learning machine (ELM) is proposed. As a typical representative in deep learning, CNN has been gaining more and more popularity in the field of image processing. However, CNN often suffers from several drawbacks, such as high computational costs and intensive human interventions. To this end, the model of convolutional extreme learning machine (CELM) is constructed by incorporating ELM into the traditional CNN model. CELM serves as an important tool to extract and capture the features of the source images from a variety of different angles. The final fused image can be obtained by integrating the significant features together. Experimental results indicate that, the proposed method is not only helpful to enhance the accuracy of the lesion detection and localization, but also superior to the current state-of-the-art ones in terms of both subjective visual performance and objective criteria." @default.
- W4309315093 created "2022-11-26" @default.
- W4309315093 creator A5008233279 @default.
- W4309315093 creator A5010912819 @default.
- W4309315093 creator A5021451658 @default.
- W4309315093 date "2022-11-16" @default.
- W4309315093 modified "2023-09-26" @default.
- W4309315093 title "Multimodal medical image fusion using convolutional neural network and extreme learning machine" @default.
- W4309315093 cites W1563899710 @default.
- W4309315093 cites W1955055330 @default.
- W4309315093 cites W1970456555 @default.
- W4309315093 cites W1980382026 @default.
- W4309315093 cites W1997480692 @default.
- W4309315093 cites W2026131661 @default.
- W4309315093 cites W2034995331 @default.
- W4309315093 cites W2036836025 @default.
- W4309315093 cites W2059111949 @default.
- W4309315093 cites W2091649119 @default.
- W4309315093 cites W2096987757 @default.
- W4309315093 cites W2111072639 @default.
- W4309315093 cites W2116702374 @default.
- W4309315093 cites W2142060261 @default.
- W4309315093 cites W2243933544 @default.
- W4309315093 cites W2266694576 @default.
- W4309315093 cites W2289413700 @default.
- W4309315093 cites W2313533761 @default.
- W4309315093 cites W2346484933 @default.
- W4309315093 cites W2461851607 @default.
- W4309315093 cites W2461906487 @default.
- W4309315093 cites W2532801510 @default.
- W4309315093 cites W2559870345 @default.
- W4309315093 cites W2561740325 @default.
- W4309315093 cites W2568836762 @default.
- W4309315093 cites W2620889673 @default.
- W4309315093 cites W2766229547 @default.
- W4309315093 cites W2783065622 @default.
- W4309315093 cites W2793890232 @default.
- W4309315093 cites W2796325360 @default.
- W4309315093 cites W2808591023 @default.
- W4309315093 cites W2891209129 @default.
- W4309315093 cites W2894561152 @default.
- W4309315093 cites W2912147220 @default.
- W4309315093 cites W2912551047 @default.
- W4309315093 cites W2931071678 @default.
- W4309315093 cites W2933486688 @default.
- W4309315093 cites W2941696098 @default.
- W4309315093 cites W2962916298 @default.
- W4309315093 cites W2974938852 @default.
- W4309315093 cites W2981937292 @default.
- W4309315093 cites W2993338284 @default.
- W4309315093 cites W2997238222 @default.
- W4309315093 cites W3000491333 @default.
- W4309315093 cites W3012761544 @default.
- W4309315093 cites W3034654080 @default.
- W4309315093 cites W3081064537 @default.
- W4309315093 cites W3126442124 @default.
- W4309315093 cites W3166573892 @default.
- W4309315093 cites W3171420223 @default.
- W4309315093 cites W3176717614 @default.
- W4309315093 cites W3182264287 @default.
- W4309315093 cites W3207181952 @default.
- W4309315093 cites W4210385745 @default.
- W4309315093 cites W4210758589 @default.
- W4309315093 cites W4226422421 @default.
- W4309315093 doi "https://doi.org/10.3389/fnbot.2022.1050981" @default.
- W4309315093 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36467563" @default.
- W4309315093 hasPublicationYear "2022" @default.
- W4309315093 type Work @default.
- W4309315093 citedByCount "4" @default.
- W4309315093 countsByYear W43093150932023 @default.
- W4309315093 crossrefType "journal-article" @default.
- W4309315093 hasAuthorship W4309315093A5008233279 @default.
- W4309315093 hasAuthorship W4309315093A5010912819 @default.
- W4309315093 hasAuthorship W4309315093A5021451658 @default.
- W4309315093 hasBestOaLocation W43093150931 @default.
- W4309315093 hasConcept C108583219 @default.
- W4309315093 hasConcept C119857082 @default.
- W4309315093 hasConcept C153180895 @default.
- W4309315093 hasConcept C154945302 @default.
- W4309315093 hasConcept C202444582 @default.
- W4309315093 hasConcept C2780150128 @default.
- W4309315093 hasConcept C31601959 @default.
- W4309315093 hasConcept C33923547 @default.
- W4309315093 hasConcept C41008148 @default.
- W4309315093 hasConcept C50644808 @default.
- W4309315093 hasConcept C81363708 @default.
- W4309315093 hasConcept C9652623 @default.
- W4309315093 hasConceptScore W4309315093C108583219 @default.
- W4309315093 hasConceptScore W4309315093C119857082 @default.
- W4309315093 hasConceptScore W4309315093C153180895 @default.
- W4309315093 hasConceptScore W4309315093C154945302 @default.
- W4309315093 hasConceptScore W4309315093C202444582 @default.
- W4309315093 hasConceptScore W4309315093C2780150128 @default.
- W4309315093 hasConceptScore W4309315093C31601959 @default.
- W4309315093 hasConceptScore W4309315093C33923547 @default.
- W4309315093 hasConceptScore W4309315093C41008148 @default.
- W4309315093 hasConceptScore W4309315093C50644808 @default.
- W4309315093 hasConceptScore W4309315093C81363708 @default.
- W4309315093 hasConceptScore W4309315093C9652623 @default.
- W4309315093 hasLocation W43093150931 @default.