Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309321714> ?p ?o ?g. }
- W4309321714 abstract "Due to the demand for tackling the problem of streaming data with high-dimensional covarites, we propose an online sparse sliced inverse regression (OSSIR) method for online sufficient dimension reduction (SDR). The existing online SDR methods focus on the case when [Formula: see text] (dimension of covariates) is small. In this paper, we adapt the sparse sliced inverse regression to cope with high-dimensional streaming data where the dimension [Formula: see text] is large. There are two important steps in our method, one is to extend the online principal component analysis to iteratively obtain the eigenvalues and eigenvectors of the kernel matrix, the other is to use the truncated gradient to perform online [Formula: see text] regularization. Theoretical properties of the proposed online learner are established. By comparing with several existing methods in simulations and real data applications, we demonstrate the effectiveness and efficiency of our method." @default.
- W4309321714 created "2022-11-26" @default.
- W4309321714 creator A5024542702 @default.
- W4309321714 creator A5061751904 @default.
- W4309321714 creator A5082089454 @default.
- W4309321714 date "2022-12-13" @default.
- W4309321714 modified "2023-10-05" @default.
- W4309321714 title "Online sparse sliced inverse regression for high-dimensional streaming data" @default.
- W4309321714 cites W1977085253 @default.
- W4309321714 cites W1981856015 @default.
- W4309321714 cites W1990718060 @default.
- W4309321714 cites W1997384244 @default.
- W4309321714 cites W2032460509 @default.
- W4309321714 cites W2050583479 @default.
- W4309321714 cites W2062832364 @default.
- W4309321714 cites W2086014844 @default.
- W4309321714 cites W2093701508 @default.
- W4309321714 cites W2121451737 @default.
- W4309321714 cites W2131329059 @default.
- W4309321714 cites W2131858147 @default.
- W4309321714 cites W2141681031 @default.
- W4309321714 cites W2144405862 @default.
- W4309321714 cites W2163490846 @default.
- W4309321714 cites W2171050905 @default.
- W4309321714 cites W2555690212 @default.
- W4309321714 cites W2586807479 @default.
- W4309321714 cites W2808057888 @default.
- W4309321714 cites W2891656133 @default.
- W4309321714 cites W2912697496 @default.
- W4309321714 cites W2923054028 @default.
- W4309321714 cites W2925868153 @default.
- W4309321714 cites W2952555815 @default.
- W4309321714 cites W2963178286 @default.
- W4309321714 cites W2964163643 @default.
- W4309321714 cites W4205209194 @default.
- W4309321714 cites W5731987 @default.
- W4309321714 doi "https://doi.org/10.1142/s0219691322500552" @default.
- W4309321714 hasPublicationYear "2022" @default.
- W4309321714 type Work @default.
- W4309321714 citedByCount "0" @default.
- W4309321714 crossrefType "journal-article" @default.
- W4309321714 hasAuthorship W4309321714A5024542702 @default.
- W4309321714 hasAuthorship W4309321714A5061751904 @default.
- W4309321714 hasAuthorship W4309321714A5082089454 @default.
- W4309321714 hasConcept C105795698 @default.
- W4309321714 hasConcept C106487976 @default.
- W4309321714 hasConcept C11413529 @default.
- W4309321714 hasConcept C114614502 @default.
- W4309321714 hasConcept C119043178 @default.
- W4309321714 hasConcept C119857082 @default.
- W4309321714 hasConcept C120665830 @default.
- W4309321714 hasConcept C121332964 @default.
- W4309321714 hasConcept C124101348 @default.
- W4309321714 hasConcept C134306372 @default.
- W4309321714 hasConcept C135252773 @default.
- W4309321714 hasConcept C154945302 @default.
- W4309321714 hasConcept C158693339 @default.
- W4309321714 hasConcept C159985019 @default.
- W4309321714 hasConcept C163716315 @default.
- W4309321714 hasConcept C184509293 @default.
- W4309321714 hasConcept C192209626 @default.
- W4309321714 hasConcept C192562407 @default.
- W4309321714 hasConcept C202444582 @default.
- W4309321714 hasConcept C207467116 @default.
- W4309321714 hasConcept C2524010 @default.
- W4309321714 hasConcept C27438332 @default.
- W4309321714 hasConcept C2776135515 @default.
- W4309321714 hasConcept C2777611316 @default.
- W4309321714 hasConcept C33676613 @default.
- W4309321714 hasConcept C33923547 @default.
- W4309321714 hasConcept C41008148 @default.
- W4309321714 hasConcept C41341539 @default.
- W4309321714 hasConcept C56372850 @default.
- W4309321714 hasConcept C62520636 @default.
- W4309321714 hasConcept C70518039 @default.
- W4309321714 hasConcept C73555534 @default.
- W4309321714 hasConcept C74193536 @default.
- W4309321714 hasConcept C83546350 @default.
- W4309321714 hasConceptScore W4309321714C105795698 @default.
- W4309321714 hasConceptScore W4309321714C106487976 @default.
- W4309321714 hasConceptScore W4309321714C11413529 @default.
- W4309321714 hasConceptScore W4309321714C114614502 @default.
- W4309321714 hasConceptScore W4309321714C119043178 @default.
- W4309321714 hasConceptScore W4309321714C119857082 @default.
- W4309321714 hasConceptScore W4309321714C120665830 @default.
- W4309321714 hasConceptScore W4309321714C121332964 @default.
- W4309321714 hasConceptScore W4309321714C124101348 @default.
- W4309321714 hasConceptScore W4309321714C134306372 @default.
- W4309321714 hasConceptScore W4309321714C135252773 @default.
- W4309321714 hasConceptScore W4309321714C154945302 @default.
- W4309321714 hasConceptScore W4309321714C158693339 @default.
- W4309321714 hasConceptScore W4309321714C159985019 @default.
- W4309321714 hasConceptScore W4309321714C163716315 @default.
- W4309321714 hasConceptScore W4309321714C184509293 @default.
- W4309321714 hasConceptScore W4309321714C192209626 @default.
- W4309321714 hasConceptScore W4309321714C192562407 @default.
- W4309321714 hasConceptScore W4309321714C202444582 @default.
- W4309321714 hasConceptScore W4309321714C207467116 @default.
- W4309321714 hasConceptScore W4309321714C2524010 @default.
- W4309321714 hasConceptScore W4309321714C27438332 @default.