Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309325344> ?p ?o ?g. }
- W4309325344 endingPage "8" @default.
- W4309325344 startingPage "1" @default.
- W4309325344 abstract "Visible Light Positioning (VLP) is a promising indoor localization technology for providing highly accurate positioning. In this work, a VLP implementation is employed to estimate the position of a vehicle in a room using the Received Signal Strength (RSS) and fixed LED-based light transmitters. Classical VLP approaches use lateration or angulation based on a wireless propagation model to obtain location estimations. However, previous work has shown that machine learning models such as Gaussian processes (GP) achieve better performance and are more robust in general, particularly in presence of non-ideal environmental conditions. As a downside, Machine Learning (ML) models require a large collection of RSS samples, which can be time-consuming to acquire. In this work, a sampling scheme based on active learning (AL) is proposed to automate the vehicle motion and to accelerate the data collection. The scheme is tested on experimental data from a RSS-based VLP setup and compared with different settings to a simple random sampling." @default.
- W4309325344 created "2022-11-26" @default.
- W4309325344 creator A5020679063 @default.
- W4309325344 creator A5030028568 @default.
- W4309325344 creator A5032697902 @default.
- W4309325344 creator A5042472054 @default.
- W4309325344 creator A5068831492 @default.
- W4309325344 creator A5081846222 @default.
- W4309325344 date "2022-12-01" @default.
- W4309325344 modified "2023-10-16" @default.
- W4309325344 title "Bayesian Active Learning for Received Signal Strength-Based Visible Light Positioning" @default.
- W4309325344 cites W1543983621 @default.
- W4309325344 cites W1555217905 @default.
- W4309325344 cites W1917840669 @default.
- W4309325344 cites W1984649364 @default.
- W4309325344 cites W2075744751 @default.
- W4309325344 cites W2100989187 @default.
- W4309325344 cites W2137509411 @default.
- W4309325344 cites W2158237256 @default.
- W4309325344 cites W2162117114 @default.
- W4309325344 cites W2294748733 @default.
- W4309325344 cites W2749750670 @default.
- W4309325344 cites W2786754192 @default.
- W4309325344 cites W2791124749 @default.
- W4309325344 cites W2865103122 @default.
- W4309325344 cites W2901866722 @default.
- W4309325344 cites W2922516170 @default.
- W4309325344 cites W2937981473 @default.
- W4309325344 cites W2941394127 @default.
- W4309325344 cites W2950927807 @default.
- W4309325344 cites W2963006277 @default.
- W4309325344 cites W2963022974 @default.
- W4309325344 cites W2964029185 @default.
- W4309325344 cites W2966974912 @default.
- W4309325344 cites W2990472302 @default.
- W4309325344 cites W3008525991 @default.
- W4309325344 cites W3021842317 @default.
- W4309325344 cites W3036377842 @default.
- W4309325344 cites W3091635898 @default.
- W4309325344 cites W3096029046 @default.
- W4309325344 cites W3102476541 @default.
- W4309325344 cites W3108914020 @default.
- W4309325344 cites W3185078080 @default.
- W4309325344 cites W4205788618 @default.
- W4309325344 cites W4220676370 @default.
- W4309325344 doi "https://doi.org/10.1109/jphot.2022.3219889" @default.
- W4309325344 hasPublicationYear "2022" @default.
- W4309325344 type Work @default.
- W4309325344 citedByCount "0" @default.
- W4309325344 crossrefType "journal-article" @default.
- W4309325344 hasAuthorship W4309325344A5020679063 @default.
- W4309325344 hasAuthorship W4309325344A5030028568 @default.
- W4309325344 hasAuthorship W4309325344A5032697902 @default.
- W4309325344 hasAuthorship W4309325344A5042472054 @default.
- W4309325344 hasAuthorship W4309325344A5068831492 @default.
- W4309325344 hasAuthorship W4309325344A5081846222 @default.
- W4309325344 hasBestOaLocation W43093253441 @default.
- W4309325344 hasConcept C111919701 @default.
- W4309325344 hasConcept C119857082 @default.
- W4309325344 hasConcept C121332964 @default.
- W4309325344 hasConcept C154945302 @default.
- W4309325344 hasConcept C163716315 @default.
- W4309325344 hasConcept C199360897 @default.
- W4309325344 hasConcept C2385561 @default.
- W4309325344 hasConcept C2778075934 @default.
- W4309325344 hasConcept C2779843651 @default.
- W4309325344 hasConcept C41008148 @default.
- W4309325344 hasConcept C555944384 @default.
- W4309325344 hasConcept C61326573 @default.
- W4309325344 hasConcept C62520636 @default.
- W4309325344 hasConcept C76155785 @default.
- W4309325344 hasConcept C79403827 @default.
- W4309325344 hasConceptScore W4309325344C111919701 @default.
- W4309325344 hasConceptScore W4309325344C119857082 @default.
- W4309325344 hasConceptScore W4309325344C121332964 @default.
- W4309325344 hasConceptScore W4309325344C154945302 @default.
- W4309325344 hasConceptScore W4309325344C163716315 @default.
- W4309325344 hasConceptScore W4309325344C199360897 @default.
- W4309325344 hasConceptScore W4309325344C2385561 @default.
- W4309325344 hasConceptScore W4309325344C2778075934 @default.
- W4309325344 hasConceptScore W4309325344C2779843651 @default.
- W4309325344 hasConceptScore W4309325344C41008148 @default.
- W4309325344 hasConceptScore W4309325344C555944384 @default.
- W4309325344 hasConceptScore W4309325344C61326573 @default.
- W4309325344 hasConceptScore W4309325344C62520636 @default.
- W4309325344 hasConceptScore W4309325344C76155785 @default.
- W4309325344 hasConceptScore W4309325344C79403827 @default.
- W4309325344 hasFunder F4320327336 @default.
- W4309325344 hasIssue "6" @default.
- W4309325344 hasLocation W43093253441 @default.
- W4309325344 hasLocation W43093253442 @default.
- W4309325344 hasLocation W43093253443 @default.
- W4309325344 hasLocation W43093253444 @default.
- W4309325344 hasLocation W43093253445 @default.
- W4309325344 hasOpenAccess W4309325344 @default.
- W4309325344 hasPrimaryLocation W43093253441 @default.
- W4309325344 hasRelatedWork W2121568968 @default.
- W4309325344 hasRelatedWork W2145408159 @default.