Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309326936> ?p ?o ?g. }
- W4309326936 endingPage "034001" @default.
- W4309326936 startingPage "034001" @default.
- W4309326936 abstract "Abstract Floating offshore wind turbines (FOWTs) can harvest more wind energy in deep water. However, due to their complex mechanical structure and harsh working conditions, various sensors, actuators, and components of FOWTs can malfunction and fail. To avoid serious accidents and reduce operation and maintenance costs, fault detection plays a critical role in wind-energy engineering, particularly for offshore wind energy. Because of complex characteristics, such as dynamics and nonlinearity, an accurate mathematical model cannot be easily obtained from first principles for FOWTs. In this paper, a new data-driven fault-detection method based on kernel canonical variable analysis (KCVA) is proposed for FOWTs. In the proposed method, the collected measurements are first augmented into time-lagged variables to capture the dynamics of FOWTs. The time-lagged variables are then mapped to a high-dimensional feature space to extract nonlinear features. Specifically, canonical variable analysis (CVA) is carried out to explore the correlations in high-dimensional feature space. For fault detection, two monitoring indexes including T 2 and squared prediction error ( <?CDATA $mathrm{SPE}$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mrow> <mml:mi mathvariant=normal>S</mml:mi> <mml:mi mathvariant=normal>P</mml:mi> <mml:mi mathvariant=normal>E</mml:mi> </mml:mrow> </mml:math> ) statistics are established. To verify the performance of the proposed KCVA-based fault-detection method, experiments on a high-fidelity FOWT benchmark, which was created from the National Renewable Energy Laboratory Fatigue, Aerodynamics, Structures, and Turbulence v8.0 simulator, were carried out. The results show the capability and efficiency of the proposed KCVA-based fault-detection method in comparison with other related methods." @default.
- W4309326936 created "2022-11-26" @default.
- W4309326936 creator A5028592683 @default.
- W4309326936 creator A5031316012 @default.
- W4309326936 creator A5032549650 @default.
- W4309326936 creator A5043363677 @default.
- W4309326936 creator A5053275663 @default.
- W4309326936 creator A5055124095 @default.
- W4309326936 date "2022-12-05" @default.
- W4309326936 modified "2023-09-23" @default.
- W4309326936 title "Data-driven fault detection of a 10 MW floating offshore wind turbine benchmark using kernel canonical variate analysis" @default.
- W4309326936 cites W1672514028 @default.
- W4309326936 cites W1966863755 @default.
- W4309326936 cites W1994505190 @default.
- W4309326936 cites W2000791053 @default.
- W4309326936 cites W2014677458 @default.
- W4309326936 cites W2020144041 @default.
- W4309326936 cites W2042641006 @default.
- W4309326936 cites W2044610659 @default.
- W4309326936 cites W2048946027 @default.
- W4309326936 cites W2067748524 @default.
- W4309326936 cites W2070170591 @default.
- W4309326936 cites W2074058676 @default.
- W4309326936 cites W2098815387 @default.
- W4309326936 cites W2152809760 @default.
- W4309326936 cites W2166834795 @default.
- W4309326936 cites W2300363034 @default.
- W4309326936 cites W2397010914 @default.
- W4309326936 cites W2466993395 @default.
- W4309326936 cites W2607335761 @default.
- W4309326936 cites W2756396991 @default.
- W4309326936 cites W2779681484 @default.
- W4309326936 cites W2786353063 @default.
- W4309326936 cites W2790443920 @default.
- W4309326936 cites W2791046358 @default.
- W4309326936 cites W2795411881 @default.
- W4309326936 cites W2892236616 @default.
- W4309326936 cites W2903668766 @default.
- W4309326936 cites W2982255046 @default.
- W4309326936 cites W2995560269 @default.
- W4309326936 cites W3034467175 @default.
- W4309326936 cites W3041285724 @default.
- W4309326936 cites W3045296289 @default.
- W4309326936 cites W3085337480 @default.
- W4309326936 cites W3094717801 @default.
- W4309326936 cites W3125385224 @default.
- W4309326936 cites W3126154795 @default.
- W4309326936 cites W3127140329 @default.
- W4309326936 cites W3137151386 @default.
- W4309326936 cites W3140699518 @default.
- W4309326936 cites W3148349382 @default.
- W4309326936 cites W3152787001 @default.
- W4309326936 cites W3156223482 @default.
- W4309326936 cites W3208459708 @default.
- W4309326936 cites W3214396588 @default.
- W4309326936 cites W4220785625 @default.
- W4309326936 cites W4240053199 @default.
- W4309326936 cites W782884148 @default.
- W4309326936 doi "https://doi.org/10.1088/1361-6501/aca347" @default.
- W4309326936 hasPublicationYear "2022" @default.
- W4309326936 type Work @default.
- W4309326936 citedByCount "1" @default.
- W4309326936 countsByYear W43093269362023 @default.
- W4309326936 crossrefType "journal-article" @default.
- W4309326936 hasAuthorship W4309326936A5028592683 @default.
- W4309326936 hasAuthorship W4309326936A5031316012 @default.
- W4309326936 hasAuthorship W4309326936A5032549650 @default.
- W4309326936 hasAuthorship W4309326936A5043363677 @default.
- W4309326936 hasAuthorship W4309326936A5053275663 @default.
- W4309326936 hasAuthorship W4309326936A5055124095 @default.
- W4309326936 hasConcept C11413529 @default.
- W4309326936 hasConcept C114614502 @default.
- W4309326936 hasConcept C119599485 @default.
- W4309326936 hasConcept C121332964 @default.
- W4309326936 hasConcept C127313418 @default.
- W4309326936 hasConcept C127413603 @default.
- W4309326936 hasConcept C13280743 @default.
- W4309326936 hasConcept C152745839 @default.
- W4309326936 hasConcept C154945302 @default.
- W4309326936 hasConcept C158622935 @default.
- W4309326936 hasConcept C165205528 @default.
- W4309326936 hasConcept C172707124 @default.
- W4309326936 hasConcept C175551986 @default.
- W4309326936 hasConcept C185798385 @default.
- W4309326936 hasConcept C2778449969 @default.
- W4309326936 hasConcept C33923547 @default.
- W4309326936 hasConcept C41008148 @default.
- W4309326936 hasConcept C62520636 @default.
- W4309326936 hasConcept C74193536 @default.
- W4309326936 hasConcept C78519656 @default.
- W4309326936 hasConcept C78600449 @default.
- W4309326936 hasConcept C8735168 @default.
- W4309326936 hasConceptScore W4309326936C11413529 @default.
- W4309326936 hasConceptScore W4309326936C114614502 @default.
- W4309326936 hasConceptScore W4309326936C119599485 @default.
- W4309326936 hasConceptScore W4309326936C121332964 @default.
- W4309326936 hasConceptScore W4309326936C127313418 @default.
- W4309326936 hasConceptScore W4309326936C127413603 @default.