Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309329782> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4309329782 endingPage "115" @default.
- W4309329782 startingPage "102" @default.
- W4309329782 abstract "Speech Emotion Recognition (SER) systems are widely regarded as essential human-computer interface applications. Extracting emotional content from voice signals enhances the communication between humans and machines. Despite the rapid advancement of Speech Emotion Recognition systems for several languages, there is still a gap in SER research for the Arabic language. The goal of this research is to build an Arabic-based SER system using a feature set that has both high performance and low computational cost. Two novel feature sets were created using a mix of spectral and prosodic features, which were evaluated on the Arabic corpus (EYASE) constructed from a drama series. EYASE is the Egyptian Arabic Semi-natural Emotion speech dataset that consists of 579 utterances representing happy, sad, angry, and neutral emotions, uttered by 3 male and 3 female professional actors. To verify the emotions’ recognition results, surveys were conducted by Arabic and non-Arabic speakers to analyze the dataset constituents. The survey results show that recognition of anger, sadness, and happiness are sometimes misclassified as neutral. Machine learning classifiers Multi-Layer Perceptron, Support Vector Machine, Random Forest, Logistic Regression, and Ensemble learning were applied. For valence (happy/angry) emotions classification, Ensemble learning showed best results of 87.59% using the 2 proposed feature sets. Featureset-2 had the highest recognition accuracy with all classifiers. For multi-emotions classification, Support Vector Machine had the highest recognition accuracy of 64% using featureset-2 and benchmarked Interspeech feature sets. The computational cost of featureset-2 was the lowest for all classifiers, either for training or testing." @default.
- W4309329782 created "2022-11-26" @default.
- W4309329782 creator A5043217585 @default.
- W4309329782 creator A5075403831 @default.
- W4309329782 date "2022-11-19" @default.
- W4309329782 modified "2023-09-26" @default.
- W4309329782 title "Emotion Recognition System for Arabic Speech: Case Study Egyptian Accent" @default.
- W4309329782 cites W147964346 @default.
- W4309329782 cites W1501669607 @default.
- W4309329782 cites W2074788634 @default.
- W4309329782 cites W2149628368 @default.
- W4309329782 cites W2164241094 @default.
- W4309329782 cites W2180587936 @default.
- W4309329782 cites W2608706649 @default.
- W4309329782 cites W2625297138 @default.
- W4309329782 cites W2787391987 @default.
- W4309329782 cites W2790391157 @default.
- W4309329782 cites W2793383796 @default.
- W4309329782 cites W2964370293 @default.
- W4309329782 cites W2997399314 @default.
- W4309329782 cites W3000139089 @default.
- W4309329782 cites W3010299549 @default.
- W4309329782 cites W3027701939 @default.
- W4309329782 cites W3086378696 @default.
- W4309329782 cites W3120709499 @default.
- W4309329782 cites W3132230678 @default.
- W4309329782 cites W3154935508 @default.
- W4309329782 cites W3157809942 @default.
- W4309329782 cites W3199294604 @default.
- W4309329782 cites W3214495478 @default.
- W4309329782 cites W4281856634 @default.
- W4309329782 doi "https://doi.org/10.1007/978-3-031-21595-7_8" @default.
- W4309329782 hasPublicationYear "2022" @default.
- W4309329782 type Work @default.
- W4309329782 citedByCount "0" @default.
- W4309329782 crossrefType "book-chapter" @default.
- W4309329782 hasAuthorship W4309329782A5043217585 @default.
- W4309329782 hasAuthorship W4309329782A5075403831 @default.
- W4309329782 hasConcept C118552586 @default.
- W4309329782 hasConcept C12267149 @default.
- W4309329782 hasConcept C138885662 @default.
- W4309329782 hasConcept C153180895 @default.
- W4309329782 hasConcept C154945302 @default.
- W4309329782 hasConcept C15744967 @default.
- W4309329782 hasConcept C169258074 @default.
- W4309329782 hasConcept C17744445 @default.
- W4309329782 hasConcept C179717631 @default.
- W4309329782 hasConcept C199539241 @default.
- W4309329782 hasConcept C204321447 @default.
- W4309329782 hasConcept C206310091 @default.
- W4309329782 hasConcept C2776401178 @default.
- W4309329782 hasConcept C2778999518 @default.
- W4309329782 hasConcept C2779302386 @default.
- W4309329782 hasConcept C28490314 @default.
- W4309329782 hasConcept C41008148 @default.
- W4309329782 hasConcept C41895202 @default.
- W4309329782 hasConcept C50644808 @default.
- W4309329782 hasConcept C60908668 @default.
- W4309329782 hasConceptScore W4309329782C118552586 @default.
- W4309329782 hasConceptScore W4309329782C12267149 @default.
- W4309329782 hasConceptScore W4309329782C138885662 @default.
- W4309329782 hasConceptScore W4309329782C153180895 @default.
- W4309329782 hasConceptScore W4309329782C154945302 @default.
- W4309329782 hasConceptScore W4309329782C15744967 @default.
- W4309329782 hasConceptScore W4309329782C169258074 @default.
- W4309329782 hasConceptScore W4309329782C17744445 @default.
- W4309329782 hasConceptScore W4309329782C179717631 @default.
- W4309329782 hasConceptScore W4309329782C199539241 @default.
- W4309329782 hasConceptScore W4309329782C204321447 @default.
- W4309329782 hasConceptScore W4309329782C206310091 @default.
- W4309329782 hasConceptScore W4309329782C2776401178 @default.
- W4309329782 hasConceptScore W4309329782C2778999518 @default.
- W4309329782 hasConceptScore W4309329782C2779302386 @default.
- W4309329782 hasConceptScore W4309329782C28490314 @default.
- W4309329782 hasConceptScore W4309329782C41008148 @default.
- W4309329782 hasConceptScore W4309329782C41895202 @default.
- W4309329782 hasConceptScore W4309329782C50644808 @default.
- W4309329782 hasConceptScore W4309329782C60908668 @default.
- W4309329782 hasLocation W43093297821 @default.
- W4309329782 hasOpenAccess W4309329782 @default.
- W4309329782 hasPrimaryLocation W43093297821 @default.
- W4309329782 hasRelatedWork W2070439790 @default.
- W4309329782 hasRelatedWork W2208810439 @default.
- W4309329782 hasRelatedWork W2338394561 @default.
- W4309329782 hasRelatedWork W2754510604 @default.
- W4309329782 hasRelatedWork W2979979539 @default.
- W4309329782 hasRelatedWork W3106494386 @default.
- W4309329782 hasRelatedWork W3168994312 @default.
- W4309329782 hasRelatedWork W3193301557 @default.
- W4309329782 hasRelatedWork W4282601365 @default.
- W4309329782 hasRelatedWork W4293234100 @default.
- W4309329782 isParatext "false" @default.
- W4309329782 isRetracted "false" @default.
- W4309329782 workType "book-chapter" @default.