Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309332456> ?p ?o ?g. }
- W4309332456 abstract "Despite remarkable advances in the construction industry, it is still among the most hazardous industries; accidents occur in the construction industry with different severity levels. Construction accident data sets are available for analysis, but they face heterogeneity and class imbalance issues. Multitudinous complexities and uncertainties in construction projects result in heterogeneity; this leads to poor predictive performance of machine learning algorithms. Class imbalance issues arise because accidents occur at different severities with unequal distribution, producing biased prediction results. This study aimed to assess the impact of clustering on construction accident analysis when a data set is heterogeneous and imbalanced and to take a step toward making incidents more predictable. Accidents were predicted following four data preparation approaches: unmodified, balanced, clustered and clustered + balanced. The k-means clustering algorithm was adopted to split the data into homogenous clusters. Synthetic minority oversampling technique (SMOTE) and k-means SMOTE (KMSMOTE) were used to overcome the class imbalance issue. Five different supervised machine learning algorithms—classification and regression tree (CART), support vector machine (SVM), random forest (RF), extreme gradient boosting (XGB) and artificial neural network (ANN)—were employed for the prediction process. The results indicated that clustering significantly improved the predictive performance of the algorithms. The use of clustering along with oversampling was also the most appropriate approach to analyze accidents, providing more accurate and reliable predictions. The improvements resulting from applying the approach were about 33%, 23%, and 33% in terms of average precision, recall, and F1-score, respectively. Moreover, the ensemble learning classifiers used, RF and XGB, outperformed the other models. Ultimately, this research assisted safety professionals in predicting outcomes more accurately and in undertaking more appropriate safety measures." @default.
- W4309332456 created "2022-11-26" @default.
- W4309332456 creator A5004317586 @default.
- W4309332456 creator A5017707428 @default.
- W4309332456 creator A5042060303 @default.
- W4309332456 creator A5089848432 @default.
- W4309332456 date "2023-02-01" @default.
- W4309332456 modified "2023-10-10" @default.
- W4309332456 title "Investigating the Role of Clustering in Construction-Accident Severity Prediction Using a Heterogeneous and Imbalanced Data Set" @default.
- W4309332456 cites W1970350787 @default.
- W4309332456 cites W1971361999 @default.
- W4309332456 cites W1983085975 @default.
- W4309332456 cites W1988045004 @default.
- W4309332456 cites W1995205240 @default.
- W4309332456 cites W2059515884 @default.
- W4309332456 cites W2065455571 @default.
- W4309332456 cites W2080012489 @default.
- W4309332456 cites W2090065470 @default.
- W4309332456 cites W2104091263 @default.
- W4309332456 cites W2118978333 @default.
- W4309332456 cites W2140405352 @default.
- W4309332456 cites W2148143831 @default.
- W4309332456 cites W2156665896 @default.
- W4309332456 cites W2156909104 @default.
- W4309332456 cites W2164341120 @default.
- W4309332456 cites W2184170249 @default.
- W4309332456 cites W2329816574 @default.
- W4309332456 cites W2424728784 @default.
- W4309332456 cites W2497532187 @default.
- W4309332456 cites W2568323331 @default.
- W4309332456 cites W2757825312 @default.
- W4309332456 cites W2758813793 @default.
- W4309332456 cites W2766296277 @default.
- W4309332456 cites W2776754622 @default.
- W4309332456 cites W2778006945 @default.
- W4309332456 cites W2796105695 @default.
- W4309332456 cites W2888738049 @default.
- W4309332456 cites W2896236534 @default.
- W4309332456 cites W2911964244 @default.
- W4309332456 cites W2944545104 @default.
- W4309332456 cites W2945020349 @default.
- W4309332456 cites W2946539590 @default.
- W4309332456 cites W2953675148 @default.
- W4309332456 cites W2960050274 @default.
- W4309332456 cites W2972701307 @default.
- W4309332456 cites W2980332979 @default.
- W4309332456 cites W2980898931 @default.
- W4309332456 cites W2990555792 @default.
- W4309332456 cites W2997218195 @default.
- W4309332456 cites W3049660401 @default.
- W4309332456 cites W3102476541 @default.
- W4309332456 cites W3112835814 @default.
- W4309332456 cites W3121727157 @default.
- W4309332456 cites W3164508800 @default.
- W4309332456 cites W4237032117 @default.
- W4309332456 cites W72211656 @default.
- W4309332456 doi "https://doi.org/10.1061/(asce)co.1943-7862.0002406" @default.
- W4309332456 hasPublicationYear "2023" @default.
- W4309332456 type Work @default.
- W4309332456 citedByCount "3" @default.
- W4309332456 countsByYear W43093324562023 @default.
- W4309332456 crossrefType "journal-article" @default.
- W4309332456 hasAuthorship W4309332456A5004317586 @default.
- W4309332456 hasAuthorship W4309332456A5017707428 @default.
- W4309332456 hasAuthorship W4309332456A5042060303 @default.
- W4309332456 hasAuthorship W4309332456A5089848432 @default.
- W4309332456 hasConcept C119857082 @default.
- W4309332456 hasConcept C12267149 @default.
- W4309332456 hasConcept C124101348 @default.
- W4309332456 hasConcept C154945302 @default.
- W4309332456 hasConcept C169258074 @default.
- W4309332456 hasConcept C177264268 @default.
- W4309332456 hasConcept C197323446 @default.
- W4309332456 hasConcept C199360897 @default.
- W4309332456 hasConcept C2776257435 @default.
- W4309332456 hasConcept C31258907 @default.
- W4309332456 hasConcept C41008148 @default.
- W4309332456 hasConcept C46686674 @default.
- W4309332456 hasConcept C50644808 @default.
- W4309332456 hasConcept C58489278 @default.
- W4309332456 hasConcept C73555534 @default.
- W4309332456 hasConceptScore W4309332456C119857082 @default.
- W4309332456 hasConceptScore W4309332456C12267149 @default.
- W4309332456 hasConceptScore W4309332456C124101348 @default.
- W4309332456 hasConceptScore W4309332456C154945302 @default.
- W4309332456 hasConceptScore W4309332456C169258074 @default.
- W4309332456 hasConceptScore W4309332456C177264268 @default.
- W4309332456 hasConceptScore W4309332456C197323446 @default.
- W4309332456 hasConceptScore W4309332456C199360897 @default.
- W4309332456 hasConceptScore W4309332456C2776257435 @default.
- W4309332456 hasConceptScore W4309332456C31258907 @default.
- W4309332456 hasConceptScore W4309332456C41008148 @default.
- W4309332456 hasConceptScore W4309332456C46686674 @default.
- W4309332456 hasConceptScore W4309332456C50644808 @default.
- W4309332456 hasConceptScore W4309332456C58489278 @default.
- W4309332456 hasConceptScore W4309332456C73555534 @default.
- W4309332456 hasIssue "2" @default.
- W4309332456 hasLocation W43093324561 @default.
- W4309332456 hasOpenAccess W4309332456 @default.
- W4309332456 hasPrimaryLocation W43093324561 @default.