Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309334377> ?p ?o ?g. }
- W4309334377 endingPage "100875" @default.
- W4309334377 startingPage "100875" @default.
- W4309334377 abstract "Monitoring changes in the areal extent and geographic distribution of wetland vegetation has become more critical considering the impact of anthropogenic and climate changes. We compared the capabilities of the optical space-borne sensors Sentinel-2 and WorldView-3 (WV3) to distinguish between wetland and terrestrial vegetation for improved reporting to the Sustainable Development Goal (SDG) sub-indicator 6.6.1a, and also map different wetland vegetation communities for two catchments in the Grassland Biome of South Africa. Ground truthing of vegetation communities was conducted between 2016 and 2018. A Random Forest classification algorithm was used with a 100-fold cross-validation to assess mean accuracies using all combinations of bands, a digital elevation model generated from fine-scale contours, spectral vegetation indices (VIs) and above-ground biomass (AGB). Five and eight wetland vegetation classes were mapped for Hogsback and Tevredenpan, respectively, of a total of 13 classes for each of the sites. Wetland and terrestrial vegetation were found to be highly separable, with overall accuracies (OAs) attaining 91–99% and individual user's accuracies 88–99% for both sensors and study areas. Even though the wetland vegetation communities consisted of a mosaic of smaller communities, monodominant species and plant functional type classes, they were found to be highly separable across sensors and study areas. The highest average OA of 83% for Hogsback's wetland vegetation communities was achieved using WV3 bands with elevation, AGB and the VIs, while the Sentinel-2 bands, elevation, AGB and VIs attained an average OA of 78%. For Tevredenpan, the use of the Sentinel-2 bands and elevation achieved the highest mean OA of 79% for the classification of wetland vegetation communities, while the WV3 (in this case the short-wave infrared bands were not available owing to shortage of funding) maximized at 74%. The inclusion of elevation data and spectral indices in the classification scenarios of wetland vegetation communities increased the OA by 4–17%. Omitting the red-edge and shortwave infrared bands for classification of vegetation classes resulted in a varied response across sensors and study areas, but decreased the OA by 4.8–7.3% when using the Sentinel-2 sensors. These results show promise for improved reporting and monitoring of the extent and types of palustrine wetlands in the Grassland Biome of South Africa using freely-available Sentinel-2 data." @default.
- W4309334377 created "2022-11-26" @default.
- W4309334377 creator A5004803712 @default.
- W4309334377 creator A5022441956 @default.
- W4309334377 creator A5029724352 @default.
- W4309334377 creator A5076254287 @default.
- W4309334377 creator A5086308388 @default.
- W4309334377 creator A5089478175 @default.
- W4309334377 date "2022-11-01" @default.
- W4309334377 modified "2023-09-30" @default.
- W4309334377 title "Comparison between Sentinel-2 and WorldView-3 sensors in mapping wetland vegetation communities of the Grassland Biome of South Africa, for monitoring under climate change" @default.
- W4309334377 cites W1862269930 @default.
- W4309334377 cites W1875873820 @default.
- W4309334377 cites W1967413121 @default.
- W4309334377 cites W1971495154 @default.
- W4309334377 cites W1978617972 @default.
- W4309334377 cites W1985555755 @default.
- W4309334377 cites W1993183238 @default.
- W4309334377 cites W1994668970 @default.
- W4309334377 cites W1999949151 @default.
- W4309334377 cites W2000613913 @default.
- W4309334377 cites W2004553299 @default.
- W4309334377 cites W2009180485 @default.
- W4309334377 cites W2011500029 @default.
- W4309334377 cites W2030485189 @default.
- W4309334377 cites W2040667072 @default.
- W4309334377 cites W2063623478 @default.
- W4309334377 cites W2089806346 @default.
- W4309334377 cites W2096682311 @default.
- W4309334377 cites W2115626646 @default.
- W4309334377 cites W2128438912 @default.
- W4309334377 cites W2136873865 @default.
- W4309334377 cites W2138324625 @default.
- W4309334377 cites W2144074723 @default.
- W4309334377 cites W2154319388 @default.
- W4309334377 cites W2177701435 @default.
- W4309334377 cites W2329061269 @default.
- W4309334377 cites W2346882447 @default.
- W4309334377 cites W2478751807 @default.
- W4309334377 cites W2519859135 @default.
- W4309334377 cites W2560167313 @default.
- W4309334377 cites W2619954273 @default.
- W4309334377 cites W2766550705 @default.
- W4309334377 cites W2911261286 @default.
- W4309334377 cites W2911964244 @default.
- W4309334377 cites W2913586827 @default.
- W4309334377 cites W2917034578 @default.
- W4309334377 cites W2952540497 @default.
- W4309334377 cites W2976469796 @default.
- W4309334377 cites W3041479205 @default.
- W4309334377 cites W3044507136 @default.
- W4309334377 cites W4304780007 @default.
- W4309334377 doi "https://doi.org/10.1016/j.rsase.2022.100875" @default.
- W4309334377 hasPublicationYear "2022" @default.
- W4309334377 type Work @default.
- W4309334377 citedByCount "0" @default.
- W4309334377 crossrefType "journal-article" @default.
- W4309334377 hasAuthorship W4309334377A5004803712 @default.
- W4309334377 hasAuthorship W4309334377A5022441956 @default.
- W4309334377 hasAuthorship W4309334377A5029724352 @default.
- W4309334377 hasAuthorship W4309334377A5076254287 @default.
- W4309334377 hasAuthorship W4309334377A5086308388 @default.
- W4309334377 hasAuthorship W4309334377A5089478175 @default.
- W4309334377 hasConcept C100970517 @default.
- W4309334377 hasConcept C110872660 @default.
- W4309334377 hasConcept C132651083 @default.
- W4309334377 hasConcept C142724271 @default.
- W4309334377 hasConcept C1549246 @default.
- W4309334377 hasConcept C18903297 @default.
- W4309334377 hasConcept C205649164 @default.
- W4309334377 hasConcept C2524010 @default.
- W4309334377 hasConcept C2775835988 @default.
- W4309334377 hasConcept C2776133958 @default.
- W4309334377 hasConcept C2780376076 @default.
- W4309334377 hasConcept C33923547 @default.
- W4309334377 hasConcept C37054046 @default.
- W4309334377 hasConcept C39432304 @default.
- W4309334377 hasConcept C62649853 @default.
- W4309334377 hasConcept C67715294 @default.
- W4309334377 hasConcept C71924100 @default.
- W4309334377 hasConcept C78869512 @default.
- W4309334377 hasConcept C86803240 @default.
- W4309334377 hasConcept C89920630 @default.
- W4309334377 hasConceptScore W4309334377C100970517 @default.
- W4309334377 hasConceptScore W4309334377C110872660 @default.
- W4309334377 hasConceptScore W4309334377C132651083 @default.
- W4309334377 hasConceptScore W4309334377C142724271 @default.
- W4309334377 hasConceptScore W4309334377C1549246 @default.
- W4309334377 hasConceptScore W4309334377C18903297 @default.
- W4309334377 hasConceptScore W4309334377C205649164 @default.
- W4309334377 hasConceptScore W4309334377C2524010 @default.
- W4309334377 hasConceptScore W4309334377C2775835988 @default.
- W4309334377 hasConceptScore W4309334377C2776133958 @default.
- W4309334377 hasConceptScore W4309334377C2780376076 @default.
- W4309334377 hasConceptScore W4309334377C33923547 @default.
- W4309334377 hasConceptScore W4309334377C37054046 @default.
- W4309334377 hasConceptScore W4309334377C39432304 @default.
- W4309334377 hasConceptScore W4309334377C62649853 @default.