Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309342246> ?p ?o ?g. }
- W4309342246 endingPage "105268" @default.
- W4309342246 startingPage "105268" @default.
- W4309342246 abstract "The retrieval of cloud fraction in satellite hyperspectral sounder field of view (FOV) is crucial for numerical weather prediction. This study proposes an innovative cloud fraction retrieval model for the hyperspectral infrared sounder - Cross-track Infrared Sounder (CrIS). The model is trained with a deep neural network (DNN), using the CrIS radiation spectra as the predictors and Visible Infrared Imaging Radiometer Suite (VIIRS) cloud mask as the learning target. An ensemble of randomly selected CrIS and VIIRS data are collocated and used as the training dataset. An optimized 5-layer neural network is built to establish the relationship between the CrIS spectra and the cloud fraction calculated from the VIIRS cloud mask within the CrIS FOV. In order to reduce the number of input predictors to enhance the efficiency of the model, a principal component transformation is performed on the original CrIS spectra and only the top 77 principal component scores are adopted as the final predictors. In general, the cloud fraction retrieved from the proposed DNN model are consistent with truth values calculated from the VIIRS cloud mask product. Further analysis on use cases demonstrates a slightly better cloud retrieval result during the daytime than that of the nighttime, and ocean retrievals are more accurate than land retrievals. However, since the relationship between CrIS spectrum and the cloud fraction is nonlinear, the model tends to slightly overestimate the cloud fractions over low cloud coverage regions and underestimate the values over high cloud fraction areas. Even so, the proposed model can still be a useful tool for obtaining cloud fraction information from hyperspectral infrared sounders and has the potential to be used for the numerical weather prediction and climate models, as well as other cloud studies." @default.
- W4309342246 created "2022-11-26" @default.
- W4309342246 creator A5000510528 @default.
- W4309342246 creator A5012014956 @default.
- W4309342246 creator A5024737035 @default.
- W4309342246 creator A5048422487 @default.
- W4309342246 creator A5064236930 @default.
- W4309342246 creator A5081501705 @default.
- W4309342246 creator A5085433889 @default.
- W4309342246 creator A5089582967 @default.
- W4309342246 date "2023-01-01" @default.
- W4309342246 modified "2023-10-15" @default.
- W4309342246 title "Cross-track infrared sounder cloud fraction retrieval using a deep neural network" @default.
- W4309342246 cites W1647902487 @default.
- W4309342246 cites W1827381938 @default.
- W4309342246 cites W1960981692 @default.
- W4309342246 cites W1961069449 @default.
- W4309342246 cites W1961775682 @default.
- W4309342246 cites W1984448752 @default.
- W4309342246 cites W1997434240 @default.
- W4309342246 cites W2003455783 @default.
- W4309342246 cites W2038142310 @default.
- W4309342246 cites W2056443016 @default.
- W4309342246 cites W2064495003 @default.
- W4309342246 cites W2091873118 @default.
- W4309342246 cites W2138480760 @default.
- W4309342246 cites W2143022165 @default.
- W4309342246 cites W2144055354 @default.
- W4309342246 cites W2144324887 @default.
- W4309342246 cites W2144951835 @default.
- W4309342246 cites W2151338578 @default.
- W4309342246 cites W2161103622 @default.
- W4309342246 cites W2172453911 @default.
- W4309342246 cites W2403649766 @default.
- W4309342246 cites W2509704578 @default.
- W4309342246 cites W2554616823 @default.
- W4309342246 cites W2584715599 @default.
- W4309342246 cites W2765909747 @default.
- W4309342246 cites W2886988899 @default.
- W4309342246 cites W2887754741 @default.
- W4309342246 cites W2911290743 @default.
- W4309342246 cites W2911725086 @default.
- W4309342246 cites W2925559970 @default.
- W4309342246 cites W2944195757 @default.
- W4309342246 cites W2944282747 @default.
- W4309342246 cites W2946782748 @default.
- W4309342246 cites W2988908323 @default.
- W4309342246 cites W3084322355 @default.
- W4309342246 cites W3100011500 @default.
- W4309342246 cites W3104899156 @default.
- W4309342246 cites W3212697758 @default.
- W4309342246 doi "https://doi.org/10.1016/j.cageo.2022.105268" @default.
- W4309342246 hasPublicationYear "2023" @default.
- W4309342246 type Work @default.
- W4309342246 citedByCount "0" @default.
- W4309342246 crossrefType "journal-article" @default.
- W4309342246 hasAuthorship W4309342246A5000510528 @default.
- W4309342246 hasAuthorship W4309342246A5012014956 @default.
- W4309342246 hasAuthorship W4309342246A5024737035 @default.
- W4309342246 hasAuthorship W4309342246A5048422487 @default.
- W4309342246 hasAuthorship W4309342246A5064236930 @default.
- W4309342246 hasAuthorship W4309342246A5081501705 @default.
- W4309342246 hasAuthorship W4309342246A5085433889 @default.
- W4309342246 hasAuthorship W4309342246A5089582967 @default.
- W4309342246 hasBestOaLocation W43093422461 @default.
- W4309342246 hasConcept C111919701 @default.
- W4309342246 hasConcept C121332964 @default.
- W4309342246 hasConcept C127313418 @default.
- W4309342246 hasConcept C1276947 @default.
- W4309342246 hasConcept C147534773 @default.
- W4309342246 hasConcept C153294291 @default.
- W4309342246 hasConcept C154945302 @default.
- W4309342246 hasConcept C159078339 @default.
- W4309342246 hasConcept C19269812 @default.
- W4309342246 hasConcept C199194280 @default.
- W4309342246 hasConcept C206887242 @default.
- W4309342246 hasConcept C23302255 @default.
- W4309342246 hasConcept C27438332 @default.
- W4309342246 hasConcept C2777701342 @default.
- W4309342246 hasConcept C2779067591 @default.
- W4309342246 hasConcept C39432304 @default.
- W4309342246 hasConcept C41008148 @default.
- W4309342246 hasConcept C50644808 @default.
- W4309342246 hasConcept C62649853 @default.
- W4309342246 hasConcept C79974875 @default.
- W4309342246 hasConceptScore W4309342246C111919701 @default.
- W4309342246 hasConceptScore W4309342246C121332964 @default.
- W4309342246 hasConceptScore W4309342246C127313418 @default.
- W4309342246 hasConceptScore W4309342246C1276947 @default.
- W4309342246 hasConceptScore W4309342246C147534773 @default.
- W4309342246 hasConceptScore W4309342246C153294291 @default.
- W4309342246 hasConceptScore W4309342246C154945302 @default.
- W4309342246 hasConceptScore W4309342246C159078339 @default.
- W4309342246 hasConceptScore W4309342246C19269812 @default.
- W4309342246 hasConceptScore W4309342246C199194280 @default.
- W4309342246 hasConceptScore W4309342246C206887242 @default.
- W4309342246 hasConceptScore W4309342246C23302255 @default.
- W4309342246 hasConceptScore W4309342246C27438332 @default.