Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309346031> ?p ?o ?g. }
- W4309346031 abstract "COVID-19 created immense global challenges in 2020, and the world will live under its threat indefinitely. Much of the information on social media supported the government in addressing this major public health event. On January 9, to control the virus, the Chinese government announced universal vaccinations. However, due to a range of varied interpretations, people held different attitudes towards vaccination. Therefore, the success of the mass immunization strategy greatly depended on the public perception of the COVID-19 vaccine. This article explores the changes in people’s emotional attitudes towards vaccines and the reasons behind them in the context of the global pandemic in an effort to help mankind overcome this ongoing crisis. For this article, microblogs from January to September containing Chinese people’s responses to the COVID-19 vaccines were collected. Based on fuzzy logic and deep learning, we advance the hypothesis that fuzzy vector adaptive improvements will make it possible to better express language emotion and that fuzzy emotion vectors can be integrated into deep learning models, thus making these models more interpretable. Based on this assumption, we design a deep learning model with a fuzzy emotion vector. The experimental results show the positive effect of this model. By applying the model in analyses of people’s attitudes towards vaccines, we can obtain people’s attitudes towards vaccines in different time periods. We discovered that the most negative emotions about the vaccine appeared in April and that the most positive emotions about the vaccine appeared in February. Combined with word cloud technology and the LDA model, we can effectively explore the reasons for the changes in vaccine attitudes. Our findings show that people’s negative emotions about the vaccine are always higher than their positive emotions about the vaccine and that people’s attitudes towards the vaccine are closely related to the progress of the epidemic. There is also a certain relationship between people’s attitudes towards the vaccine and those towards the vaccination." @default.
- W4309346031 created "2022-11-26" @default.
- W4309346031 creator A5010738468 @default.
- W4309346031 creator A5023158018 @default.
- W4309346031 creator A5088385429 @default.
- W4309346031 date "2022-11-16" @default.
- W4309346031 modified "2023-10-18" @default.
- W4309346031 title "Emotion Analysis of COVID-19 Vaccines Based on a Fuzzy Convolutional Neural Network" @default.
- W4309346031 cites W1974632923 @default.
- W4309346031 cites W1988323515 @default.
- W4309346031 cites W2084518431 @default.
- W4309346031 cites W2108441889 @default.
- W4309346031 cites W2746802549 @default.
- W4309346031 cites W2962793900 @default.
- W4309346031 cites W2997254516 @default.
- W4309346031 cites W3004220385 @default.
- W4309346031 cites W3007663754 @default.
- W4309346031 cites W3008698979 @default.
- W4309346031 cites W3015236197 @default.
- W4309346031 cites W3018072231 @default.
- W4309346031 cites W3026887460 @default.
- W4309346031 cites W3036832155 @default.
- W4309346031 cites W3041333867 @default.
- W4309346031 cites W3048383858 @default.
- W4309346031 cites W3061903604 @default.
- W4309346031 cites W3081987387 @default.
- W4309346031 cites W3088352144 @default.
- W4309346031 cites W3096058949 @default.
- W4309346031 cites W3096677443 @default.
- W4309346031 cites W3097835659 @default.
- W4309346031 cites W3101079689 @default.
- W4309346031 cites W3107679267 @default.
- W4309346031 cites W3127056209 @default.
- W4309346031 cites W3133701957 @default.
- W4309346031 cites W3134167050 @default.
- W4309346031 cites W3135627339 @default.
- W4309346031 cites W3146497429 @default.
- W4309346031 cites W3154098986 @default.
- W4309346031 cites W3155943137 @default.
- W4309346031 cites W3171655181 @default.
- W4309346031 cites W3173302161 @default.
- W4309346031 cites W3174995573 @default.
- W4309346031 cites W3176189029 @default.
- W4309346031 cites W3176719207 @default.
- W4309346031 cites W3177615549 @default.
- W4309346031 cites W3207242962 @default.
- W4309346031 cites W3207714266 @default.
- W4309346031 cites W3209748213 @default.
- W4309346031 cites W3212038008 @default.
- W4309346031 cites W4205388893 @default.
- W4309346031 cites W4205702875 @default.
- W4309346031 cites W4213157726 @default.
- W4309346031 doi "https://doi.org/10.1007/s12559-022-10068-6" @default.
- W4309346031 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36406893" @default.
- W4309346031 hasPublicationYear "2022" @default.
- W4309346031 type Work @default.
- W4309346031 citedByCount "0" @default.
- W4309346031 crossrefType "journal-article" @default.
- W4309346031 hasAuthorship W4309346031A5010738468 @default.
- W4309346031 hasAuthorship W4309346031A5023158018 @default.
- W4309346031 hasAuthorship W4309346031A5088385429 @default.
- W4309346031 hasBestOaLocation W43093460311 @default.
- W4309346031 hasConcept C108583219 @default.
- W4309346031 hasConcept C136764020 @default.
- W4309346031 hasConcept C138816342 @default.
- W4309346031 hasConcept C138885662 @default.
- W4309346031 hasConcept C142724271 @default.
- W4309346031 hasConcept C154945302 @default.
- W4309346031 hasConcept C15744967 @default.
- W4309346031 hasConcept C159110408 @default.
- W4309346031 hasConcept C166957645 @default.
- W4309346031 hasConcept C17744445 @default.
- W4309346031 hasConcept C180747234 @default.
- W4309346031 hasConcept C2778137410 @default.
- W4309346031 hasConcept C2779134260 @default.
- W4309346031 hasConcept C2779343474 @default.
- W4309346031 hasConcept C3008058167 @default.
- W4309346031 hasConcept C39549134 @default.
- W4309346031 hasConcept C41008148 @default.
- W4309346031 hasConcept C41895202 @default.
- W4309346031 hasConcept C518677369 @default.
- W4309346031 hasConcept C524204448 @default.
- W4309346031 hasConcept C58166 @default.
- W4309346031 hasConcept C71924100 @default.
- W4309346031 hasConcept C81363708 @default.
- W4309346031 hasConcept C89623803 @default.
- W4309346031 hasConcept C95457728 @default.
- W4309346031 hasConceptScore W4309346031C108583219 @default.
- W4309346031 hasConceptScore W4309346031C136764020 @default.
- W4309346031 hasConceptScore W4309346031C138816342 @default.
- W4309346031 hasConceptScore W4309346031C138885662 @default.
- W4309346031 hasConceptScore W4309346031C142724271 @default.
- W4309346031 hasConceptScore W4309346031C154945302 @default.
- W4309346031 hasConceptScore W4309346031C15744967 @default.
- W4309346031 hasConceptScore W4309346031C159110408 @default.
- W4309346031 hasConceptScore W4309346031C166957645 @default.
- W4309346031 hasConceptScore W4309346031C17744445 @default.
- W4309346031 hasConceptScore W4309346031C180747234 @default.
- W4309346031 hasConceptScore W4309346031C2778137410 @default.
- W4309346031 hasConceptScore W4309346031C2779134260 @default.