Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309347197> ?p ?o ?g. }
- W4309347197 endingPage "115759" @default.
- W4309347197 startingPage "115759" @default.
- W4309347197 abstract "Parametric multiscale tumor models have been used nowadays as tools to understand and predict the behavior of tumor onset, development, and decrease under treatments. In order to obtain a useful model, its parameters have to be accurately estimated, often requiring numerous model evaluations. This can be computationally prohibitive for complex problems. In this work, we propose an approximate Bayesian computation approach for estimating model parameters using a low-fidelity Gaussian Process Regression metamodel. We develop an adaptive procedure to build the data-driven surrogate model by sequentially enriching the data set in the parametric space regions where the surrogate is not accurate enough. At the end of the process, we obtain good emulators of the original models over the entire parametric space at a low computational cost. We investigate the use of the proposed framework for the calibration of two tumor growth models, reaching high accuracy and computational efficiency, which may be key issues in many complex problems." @default.
- W4309347197 created "2022-11-26" @default.
- W4309347197 creator A5006739085 @default.
- W4309347197 creator A5051048073 @default.
- W4309347197 creator A5060145886 @default.
- W4309347197 creator A5072496760 @default.
- W4309347197 creator A5078132331 @default.
- W4309347197 date "2022-12-01" @default.
- W4309347197 modified "2023-10-14" @default.
- W4309347197 title "Reprint of: Bayesian inference using Gaussian process surrogates in cancer modeling" @default.
- W4309347197 cites W1576825000 @default.
- W4309347197 cites W1981703585 @default.
- W4309347197 cites W2019787714 @default.
- W4309347197 cites W2045434770 @default.
- W4309347197 cites W2045973738 @default.
- W4309347197 cites W2094129114 @default.
- W4309347197 cites W2104010300 @default.
- W4309347197 cites W2127225632 @default.
- W4309347197 cites W2135267747 @default.
- W4309347197 cites W2143735816 @default.
- W4309347197 cites W2179429273 @default.
- W4309347197 cites W2245948944 @default.
- W4309347197 cites W2465605447 @default.
- W4309347197 cites W2558622672 @default.
- W4309347197 cites W2602518026 @default.
- W4309347197 cites W2752004087 @default.
- W4309347197 cites W2765898593 @default.
- W4309347197 cites W2790101447 @default.
- W4309347197 cites W2902681497 @default.
- W4309347197 cites W2938305903 @default.
- W4309347197 cites W2950361325 @default.
- W4309347197 cites W2958036537 @default.
- W4309347197 cites W2962771927 @default.
- W4309347197 cites W3000508506 @default.
- W4309347197 cites W3099943533 @default.
- W4309347197 cites W3217680342 @default.
- W4309347197 cites W4206462209 @default.
- W4309347197 doi "https://doi.org/10.1016/j.cma.2022.115759" @default.
- W4309347197 hasPublicationYear "2022" @default.
- W4309347197 type Work @default.
- W4309347197 citedByCount "0" @default.
- W4309347197 crossrefType "journal-article" @default.
- W4309347197 hasAuthorship W4309347197A5006739085 @default.
- W4309347197 hasAuthorship W4309347197A5051048073 @default.
- W4309347197 hasAuthorship W4309347197A5060145886 @default.
- W4309347197 hasAuthorship W4309347197A5072496760 @default.
- W4309347197 hasAuthorship W4309347197A5078132331 @default.
- W4309347197 hasConcept C105795698 @default.
- W4309347197 hasConcept C107673813 @default.
- W4309347197 hasConcept C11413529 @default.
- W4309347197 hasConcept C117251300 @default.
- W4309347197 hasConcept C119857082 @default.
- W4309347197 hasConcept C121332964 @default.
- W4309347197 hasConcept C124101348 @default.
- W4309347197 hasConcept C131675550 @default.
- W4309347197 hasConcept C154945302 @default.
- W4309347197 hasConcept C160234255 @default.
- W4309347197 hasConcept C163716315 @default.
- W4309347197 hasConcept C199360897 @default.
- W4309347197 hasConcept C2776214188 @default.
- W4309347197 hasConcept C2779377595 @default.
- W4309347197 hasConcept C32230216 @default.
- W4309347197 hasConcept C33923547 @default.
- W4309347197 hasConcept C41008148 @default.
- W4309347197 hasConcept C61326573 @default.
- W4309347197 hasConcept C62520636 @default.
- W4309347197 hasConcept C81692654 @default.
- W4309347197 hasConcept C86610423 @default.
- W4309347197 hasConceptScore W4309347197C105795698 @default.
- W4309347197 hasConceptScore W4309347197C107673813 @default.
- W4309347197 hasConceptScore W4309347197C11413529 @default.
- W4309347197 hasConceptScore W4309347197C117251300 @default.
- W4309347197 hasConceptScore W4309347197C119857082 @default.
- W4309347197 hasConceptScore W4309347197C121332964 @default.
- W4309347197 hasConceptScore W4309347197C124101348 @default.
- W4309347197 hasConceptScore W4309347197C131675550 @default.
- W4309347197 hasConceptScore W4309347197C154945302 @default.
- W4309347197 hasConceptScore W4309347197C160234255 @default.
- W4309347197 hasConceptScore W4309347197C163716315 @default.
- W4309347197 hasConceptScore W4309347197C199360897 @default.
- W4309347197 hasConceptScore W4309347197C2776214188 @default.
- W4309347197 hasConceptScore W4309347197C2779377595 @default.
- W4309347197 hasConceptScore W4309347197C32230216 @default.
- W4309347197 hasConceptScore W4309347197C33923547 @default.
- W4309347197 hasConceptScore W4309347197C41008148 @default.
- W4309347197 hasConceptScore W4309347197C61326573 @default.
- W4309347197 hasConceptScore W4309347197C62520636 @default.
- W4309347197 hasConceptScore W4309347197C81692654 @default.
- W4309347197 hasConceptScore W4309347197C86610423 @default.
- W4309347197 hasFunder F4320316625 @default.
- W4309347197 hasFunder F4320321091 @default.
- W4309347197 hasFunder F4320322025 @default.
- W4309347197 hasLocation W43093471971 @default.
- W4309347197 hasOpenAccess W4309347197 @default.
- W4309347197 hasPrimaryLocation W43093471971 @default.
- W4309347197 hasRelatedWork W2887751214 @default.
- W4309347197 hasRelatedWork W2979563324 @default.
- W4309347197 hasRelatedWork W3007467314 @default.