Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309347761> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4309347761 endingPage "288" @default.
- W4309347761 startingPage "243" @default.
- W4309347761 abstract "Arab customers give their comments and opinions daily, and it increases dramatically through online reviews of products or services from companies, in both Arabic, and its dialects. This text describes the user’s condition or needs for satisfaction or dissatisfaction, and this evaluation is either negative or positive polarity. Based on the need to work on Arabic text sentiment analysis problem, the case of the Jordanian dialect. The main purpose of this paper is to classify text into two classes: negative or positive which may help the business to maintain a report about service or product. The first phase has tools used in natural language processing; the stemming, stop word removal, and tokenization to filtering the text. The second phase, modified the Artificial Bee Colony (ABC) Algorithm, with Upper Confidence Bound (UCB) Algorithm, to promote the exploitation ability for the minimum dimension, to get the minimum number of the optimal feature, then using forward feature selection strategy by four classifiers of machine learning algorithms: (K-Nearest Neighbors (KNN), Support vector machines (SVM), Naïve-Bayes (NB), and Polynomial Neural Networks (PNN). This proposed model has been applied to the Jordanian dialect database, which contains comments from Jordanian telecom company’s customers. Based on the results of sentiment analysis few suggestions can be provided to the products or services to discontinue or drop, or upgrades it. Moreover, the proposed model is applied to the database of the Algerian dialect, which contains long Arabic texts, in order to see the efficiency of the proposed model for short and long texts. Four performance evaluation criteria were used: precision, recall, f1-score, and accuracy. For a future step, in order to build on or use for the classification of Arabic dialects, the experimental results show that the proposed model gives height accuracy up to 99% by applying to the Jordanian dialect, and a 82% by applying to the Algerian dialect." @default.
- W4309347761 created "2022-11-26" @default.
- W4309347761 creator A5000492951 @default.
- W4309347761 creator A5006242246 @default.
- W4309347761 creator A5020539733 @default.
- W4309347761 creator A5023403556 @default.
- W4309347761 creator A5051075743 @default.
- W4309347761 creator A5060873940 @default.
- W4309347761 creator A5077522017 @default.
- W4309347761 creator A5078607983 @default.
- W4309347761 date "2022-11-17" @default.
- W4309347761 modified "2023-09-26" @default.
- W4309347761 title "Arabic Text Classification Using Modified Artificial Bee Colony Algorithm for Sentiment Analysis: The Case of Jordanian Dialect" @default.
- W4309347761 cites W1964552793 @default.
- W4309347761 cites W2114652055 @default.
- W4309347761 cites W2338833146 @default.
- W4309347761 cites W2766567518 @default.
- W4309347761 cites W2964498586 @default.
- W4309347761 cites W2973639036 @default.
- W4309347761 cites W2974335209 @default.
- W4309347761 cites W3001043111 @default.
- W4309347761 cites W3006986403 @default.
- W4309347761 cites W3013058757 @default.
- W4309347761 cites W3021265327 @default.
- W4309347761 cites W3021943729 @default.
- W4309347761 cites W3041754645 @default.
- W4309347761 cites W3046492425 @default.
- W4309347761 cites W3047183961 @default.
- W4309347761 cites W3048037280 @default.
- W4309347761 cites W3081555331 @default.
- W4309347761 cites W3088162569 @default.
- W4309347761 cites W3090444825 @default.
- W4309347761 cites W3090612586 @default.
- W4309347761 cites W3117349804 @default.
- W4309347761 cites W3134591321 @default.
- W4309347761 cites W3157657823 @default.
- W4309347761 cites W4235694916 @default.
- W4309347761 cites W4235985919 @default.
- W4309347761 doi "https://doi.org/10.1007/978-3-031-17576-3_12" @default.
- W4309347761 hasPublicationYear "2022" @default.
- W4309347761 type Work @default.
- W4309347761 citedByCount "0" @default.
- W4309347761 crossrefType "book-chapter" @default.
- W4309347761 hasAuthorship W4309347761A5000492951 @default.
- W4309347761 hasAuthorship W4309347761A5006242246 @default.
- W4309347761 hasAuthorship W4309347761A5020539733 @default.
- W4309347761 hasAuthorship W4309347761A5023403556 @default.
- W4309347761 hasAuthorship W4309347761A5051075743 @default.
- W4309347761 hasAuthorship W4309347761A5060873940 @default.
- W4309347761 hasAuthorship W4309347761A5077522017 @default.
- W4309347761 hasAuthorship W4309347761A5078607983 @default.
- W4309347761 hasConcept C119857082 @default.
- W4309347761 hasConcept C12267149 @default.
- W4309347761 hasConcept C136264566 @default.
- W4309347761 hasConcept C148483581 @default.
- W4309347761 hasConcept C154945302 @default.
- W4309347761 hasConcept C162324750 @default.
- W4309347761 hasConcept C176982825 @default.
- W4309347761 hasConcept C204321447 @default.
- W4309347761 hasConcept C2780378061 @default.
- W4309347761 hasConcept C41008148 @default.
- W4309347761 hasConcept C52001869 @default.
- W4309347761 hasConcept C66402592 @default.
- W4309347761 hasConceptScore W4309347761C119857082 @default.
- W4309347761 hasConceptScore W4309347761C12267149 @default.
- W4309347761 hasConceptScore W4309347761C136264566 @default.
- W4309347761 hasConceptScore W4309347761C148483581 @default.
- W4309347761 hasConceptScore W4309347761C154945302 @default.
- W4309347761 hasConceptScore W4309347761C162324750 @default.
- W4309347761 hasConceptScore W4309347761C176982825 @default.
- W4309347761 hasConceptScore W4309347761C204321447 @default.
- W4309347761 hasConceptScore W4309347761C2780378061 @default.
- W4309347761 hasConceptScore W4309347761C41008148 @default.
- W4309347761 hasConceptScore W4309347761C52001869 @default.
- W4309347761 hasConceptScore W4309347761C66402592 @default.
- W4309347761 hasLocation W43093477611 @default.
- W4309347761 hasLocation W43093477612 @default.
- W4309347761 hasOpenAccess W4309347761 @default.
- W4309347761 hasPrimaryLocation W43093477611 @default.
- W4309347761 hasRelatedWork W2809687065 @default.
- W4309347761 hasRelatedWork W2985924212 @default.
- W4309347761 hasRelatedWork W3092005458 @default.
- W4309347761 hasRelatedWork W3122308606 @default.
- W4309347761 hasRelatedWork W3186233728 @default.
- W4309347761 hasRelatedWork W4312478656 @default.
- W4309347761 hasRelatedWork W4317422767 @default.
- W4309347761 hasRelatedWork W4319752445 @default.
- W4309347761 hasRelatedWork W4327772909 @default.
- W4309347761 hasRelatedWork W4364301914 @default.
- W4309347761 isParatext "false" @default.
- W4309347761 isRetracted "false" @default.
- W4309347761 workType "book-chapter" @default.