Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309352206> ?p ?o ?g. }
- W4309352206 endingPage "030202" @default.
- W4309352206 startingPage "030202" @default.
- W4309352206 abstract "The method of moments is one of the most effective algorithms for solving electromagnetic scattering problems. However, the high computational complexity limits its application to electrically large problems. As an improved algorithm, the compressive sensing-based method of moments introduces the compressive sensing technique into the algorithmic structure, which avoids the inverse of the matrix equation and improves the computational efficiency. Using the underdetermined equation-based calculation model, this scheme is utilized to efficiently analyze the bistatic scattering of the objects. In this technique, the extracted few rows from the impedance matrix are used to construct the measurement matrix. Nevertheless, the results are unstable due to the random extraction utilized to build the measurement matrix. Furthermore, it is challenging task to provide an appropriate sparse basis for the induced currents of three-dimensional objects discretized by the Rao-Wilton-Glisson basis functions. To address the aforementioned issues, a novel compressive sensing calculation model that enhances measurement matrix building, sparse basis construction, and recovery is provided in this paper. First, several rows of the impedance matrix are uniformly extracted to produce consistent computation results, which is opposed to the randomly constructed measurement matrix in the conventional technique. The number of rows to be extracted is typically set to be 3–5 times the number of basis functions for high accuracy. Then, the characteristic basis functions based on the Foldy-Lax equation are employed to construct the sparse basis. Considering the prior knowledge that the lower order characteristic basis functions are dominant, the columns of the recovery matrix corresponding to some low-order characteristic functions are determined in advance as the columns that will be identified by the recovery algorithm, thus simplifying the recovery algorithm to a least-squares operation. Obviously, the matrix equation is reduced to an overdetermined equation instead of the underdetermined equation since only a few low-order basis functions are to be computed. Compared with the conventional compressive sensing-based method of moments with characteristic basis functions, the computation time is significantly reduced in terms of constructing the basis functions and recovering the current coefficients, while the accuracy is improved. Finally, both the suggested method and the conventional compressive sensing-based method of moments are used to simulate the bistatic radar cross sections of the perfect electrical conductor cube, cylinder, and missile model. The efficiency and accuracy of the proposed method are verified by the numerical results." @default.
- W4309352206 created "2022-11-26" @default.
- W4309352206 creator A5001920708 @default.
- W4309352206 creator A5039647917 @default.
- W4309352206 creator A5054060249 @default.
- W4309352206 creator A5071748189 @default.
- W4309352206 date "2023-01-01" @default.
- W4309352206 modified "2023-10-13" @default.
- W4309352206 title "Novel compressive sensing computing model used for analyzing electromagnetic scattering characteristics of three-dimensional electrically large objects" @default.
- W4309352206 cites W1977692551 @default.
- W4309352206 cites W2015418199 @default.
- W4309352206 cites W2015513674 @default.
- W4309352206 cites W2065321782 @default.
- W4309352206 cites W2111343081 @default.
- W4309352206 cites W2120405260 @default.
- W4309352206 cites W2159126240 @default.
- W4309352206 cites W2163068304 @default.
- W4309352206 cites W2317252419 @default.
- W4309352206 cites W2431750157 @default.
- W4309352206 cites W2491056020 @default.
- W4309352206 cites W3016263396 @default.
- W4309352206 cites W3021090666 @default.
- W4309352206 cites W3042189362 @default.
- W4309352206 cites W3111900394 @default.
- W4309352206 cites W3117074510 @default.
- W4309352206 cites W3168484080 @default.
- W4309352206 cites W3195829480 @default.
- W4309352206 cites W4250955649 @default.
- W4309352206 cites W4285229371 @default.
- W4309352206 doi "https://doi.org/10.7498/aps.72.20221532" @default.
- W4309352206 hasPublicationYear "2023" @default.
- W4309352206 type Work @default.
- W4309352206 citedByCount "1" @default.
- W4309352206 crossrefType "journal-article" @default.
- W4309352206 hasAuthorship W4309352206A5001920708 @default.
- W4309352206 hasAuthorship W4309352206A5039647917 @default.
- W4309352206 hasAuthorship W4309352206A5054060249 @default.
- W4309352206 hasAuthorship W4309352206A5071748189 @default.
- W4309352206 hasBestOaLocation W43093522061 @default.
- W4309352206 hasConcept C105795698 @default.
- W4309352206 hasConcept C106487976 @default.
- W4309352206 hasConcept C113805353 @default.
- W4309352206 hasConcept C11413529 @default.
- W4309352206 hasConcept C120665830 @default.
- W4309352206 hasConcept C121332964 @default.
- W4309352206 hasConcept C12426560 @default.
- W4309352206 hasConcept C124851039 @default.
- W4309352206 hasConcept C126255220 @default.
- W4309352206 hasConcept C134306372 @default.
- W4309352206 hasConcept C135252773 @default.
- W4309352206 hasConcept C135598885 @default.
- W4309352206 hasConcept C156872377 @default.
- W4309352206 hasConcept C159985019 @default.
- W4309352206 hasConcept C163716315 @default.
- W4309352206 hasConcept C17829176 @default.
- W4309352206 hasConcept C179690561 @default.
- W4309352206 hasConcept C185429906 @default.
- W4309352206 hasConcept C191486275 @default.
- W4309352206 hasConcept C192562407 @default.
- W4309352206 hasConcept C2524010 @default.
- W4309352206 hasConcept C2780033567 @default.
- W4309352206 hasConcept C33923547 @default.
- W4309352206 hasConcept C41008148 @default.
- W4309352206 hasConcept C56372850 @default.
- W4309352206 hasConcept C5917680 @default.
- W4309352206 hasConcept C62520636 @default.
- W4309352206 hasConcept C73000952 @default.
- W4309352206 hasConcept C77088390 @default.
- W4309352206 hasConcept C99217422 @default.
- W4309352206 hasConceptScore W4309352206C105795698 @default.
- W4309352206 hasConceptScore W4309352206C106487976 @default.
- W4309352206 hasConceptScore W4309352206C113805353 @default.
- W4309352206 hasConceptScore W4309352206C11413529 @default.
- W4309352206 hasConceptScore W4309352206C120665830 @default.
- W4309352206 hasConceptScore W4309352206C121332964 @default.
- W4309352206 hasConceptScore W4309352206C12426560 @default.
- W4309352206 hasConceptScore W4309352206C124851039 @default.
- W4309352206 hasConceptScore W4309352206C126255220 @default.
- W4309352206 hasConceptScore W4309352206C134306372 @default.
- W4309352206 hasConceptScore W4309352206C135252773 @default.
- W4309352206 hasConceptScore W4309352206C135598885 @default.
- W4309352206 hasConceptScore W4309352206C156872377 @default.
- W4309352206 hasConceptScore W4309352206C159985019 @default.
- W4309352206 hasConceptScore W4309352206C163716315 @default.
- W4309352206 hasConceptScore W4309352206C17829176 @default.
- W4309352206 hasConceptScore W4309352206C179690561 @default.
- W4309352206 hasConceptScore W4309352206C185429906 @default.
- W4309352206 hasConceptScore W4309352206C191486275 @default.
- W4309352206 hasConceptScore W4309352206C192562407 @default.
- W4309352206 hasConceptScore W4309352206C2524010 @default.
- W4309352206 hasConceptScore W4309352206C2780033567 @default.
- W4309352206 hasConceptScore W4309352206C33923547 @default.
- W4309352206 hasConceptScore W4309352206C41008148 @default.
- W4309352206 hasConceptScore W4309352206C56372850 @default.
- W4309352206 hasConceptScore W4309352206C5917680 @default.
- W4309352206 hasConceptScore W4309352206C62520636 @default.
- W4309352206 hasConceptScore W4309352206C73000952 @default.
- W4309352206 hasConceptScore W4309352206C77088390 @default.