Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309374292> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4309374292 abstract "Fake news that combines text and images has a better story-telling ability than text-only fake news, making it more deceptive and easier to spread maliciously. Therefore, multi-modal fake news detection has become a new hot topic. There are two main challenges in this task. First, the traditional pre-training model BERT has more parameters and a relatively slow training speed, which limits the level of extracted text features. Second, in the multi-modal form, the fusion process is only a simple splicing of visual and textual features of news, and the obtained multi-modal features are insufficient to express the complementarity between multi-modal data and may have redundant information, potentially leading to biased detection results.In order to solve the above issues, we propose ALB-MCF, using ALBERT and Multi-modal Circulant Fusion(MCF) for fake news detection. ALB-MCF consists of four main modules: a multi-modal feature extractor, a multi-modal feature fusion, a fake news detection and a domain classifier. Specifically, the multi-modal feature extractor innovatively uses a pre-trained ALBERT model to extract text features and a pre-trained VGG19 model to extract visual features. Then, the text features and the visual features are fused into a multi-modal feature representation by MCF, which improves the fusion capability while avoiding an increase in parameters and computational cost. Finally, the multi-modal features are fed into the detector to detect fake news. The role of the domain classifier is mainly to remove event-specific features while retaining shared features between events, thus providing effective detection of emerging events. We have conducted extensive experiments on two real-world datasets. The results demonstrated that our model can handle multi-modal data more effectively, thus improving the accuracy of fake news detection." @default.
- W4309374292 created "2022-11-26" @default.
- W4309374292 creator A5026151620 @default.
- W4309374292 creator A5065047387 @default.
- W4309374292 creator A5067126494 @default.
- W4309374292 creator A5086418698 @default.
- W4309374292 date "2022-10-09" @default.
- W4309374292 modified "2023-09-27" @default.
- W4309374292 title "Using ALBERT and Multi-modal Circulant Fusion for Fake News Detection" @default.
- W4309374292 cites W2041614930 @default.
- W4309374292 cites W2084591134 @default.
- W4309374292 cites W2097117768 @default.
- W4309374292 cites W2194775991 @default.
- W4309374292 cites W2531862055 @default.
- W4309374292 cites W2609512471 @default.
- W4309374292 cites W2612179682 @default.
- W4309374292 cites W2741930413 @default.
- W4309374292 cites W2766462585 @default.
- W4309374292 cites W2808647806 @default.
- W4309374292 cites W2809476703 @default.
- W4309374292 cites W2912305564 @default.
- W4309374292 cites W2982137384 @default.
- W4309374292 cites W3089691460 @default.
- W4309374292 cites W3101890897 @default.
- W4309374292 cites W3153567752 @default.
- W4309374292 cites W3157731560 @default.
- W4309374292 cites W3159686626 @default.
- W4309374292 cites W3185106195 @default.
- W4309374292 cites W3206237685 @default.
- W4309374292 cites W4205579485 @default.
- W4309374292 doi "https://doi.org/10.1109/smc53654.2022.9945303" @default.
- W4309374292 hasPublicationYear "2022" @default.
- W4309374292 type Work @default.
- W4309374292 citedByCount "0" @default.
- W4309374292 crossrefType "proceedings-article" @default.
- W4309374292 hasAuthorship W4309374292A5026151620 @default.
- W4309374292 hasAuthorship W4309374292A5065047387 @default.
- W4309374292 hasAuthorship W4309374292A5067126494 @default.
- W4309374292 hasAuthorship W4309374292A5086418698 @default.
- W4309374292 hasConcept C117978034 @default.
- W4309374292 hasConcept C127413603 @default.
- W4309374292 hasConcept C153180895 @default.
- W4309374292 hasConcept C154945302 @default.
- W4309374292 hasConcept C185592680 @default.
- W4309374292 hasConcept C188027245 @default.
- W4309374292 hasConcept C204321447 @default.
- W4309374292 hasConcept C21880701 @default.
- W4309374292 hasConcept C28490314 @default.
- W4309374292 hasConcept C41008148 @default.
- W4309374292 hasConcept C71139939 @default.
- W4309374292 hasConcept C95623464 @default.
- W4309374292 hasConceptScore W4309374292C117978034 @default.
- W4309374292 hasConceptScore W4309374292C127413603 @default.
- W4309374292 hasConceptScore W4309374292C153180895 @default.
- W4309374292 hasConceptScore W4309374292C154945302 @default.
- W4309374292 hasConceptScore W4309374292C185592680 @default.
- W4309374292 hasConceptScore W4309374292C188027245 @default.
- W4309374292 hasConceptScore W4309374292C204321447 @default.
- W4309374292 hasConceptScore W4309374292C21880701 @default.
- W4309374292 hasConceptScore W4309374292C28490314 @default.
- W4309374292 hasConceptScore W4309374292C41008148 @default.
- W4309374292 hasConceptScore W4309374292C71139939 @default.
- W4309374292 hasConceptScore W4309374292C95623464 @default.
- W4309374292 hasFunder F4320337504 @default.
- W4309374292 hasLocation W43093742921 @default.
- W4309374292 hasOpenAccess W4309374292 @default.
- W4309374292 hasPrimaryLocation W43093742921 @default.
- W4309374292 hasRelatedWork W2001652754 @default.
- W4309374292 hasRelatedWork W2549006548 @default.
- W4309374292 hasRelatedWork W2563096758 @default.
- W4309374292 hasRelatedWork W2783820472 @default.
- W4309374292 hasRelatedWork W2784352036 @default.
- W4309374292 hasRelatedWork W2807311372 @default.
- W4309374292 hasRelatedWork W2972035100 @default.
- W4309374292 hasRelatedWork W2994855682 @default.
- W4309374292 hasRelatedWork W3043252291 @default.
- W4309374292 hasRelatedWork W4214932115 @default.
- W4309374292 isParatext "false" @default.
- W4309374292 isRetracted "false" @default.
- W4309374292 workType "article" @default.