Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309375094> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4309375094 abstract "In a recent day, we could witness an explosive growth of artificial intelligence and deep learning in medical applications. With the increased availability of medical images, deep learning tools can provide a necessary diagnostic utility. However, current DNN models have shown high variations in their performance to each medical image datasets. In this study, we proposed ensemble learning to achieve synergistic improvements in model accuracy and thereby provide highly stabilized performance on diverse medical datasets. We first investigated the model performance of the latest deep learning architectures, e.g., Inception, VGGNet, MobileNet, Xception, ResNet50, and selected 7 state-of-the-art models to the diverse open CT datasets (SARS-COV-2 CT-Scan, USCD CT, and COVID-X dataset). The model parameters were transferred from the other domain and fine-tuned based on medical image sets. The last convolutional layers were stacked and a fully-connected neural network is employed to find generalized feature space. The peak accuracy of the fine-tuned single CNN models were InceptionV3 - 0.96, VGG16 - 0.94, VGG19 - 0.94, MobileNetV2 - 0.98, Xception - 0.9, ResNet - 0.96, DenseNet201 - 0.97. The proposed ensemble model achieves the peak accuracy of 0.99%, outperforming each individual model and achieving the highest performance in all three open CT datasets. Experimental results demonstrated that the proposed ensemble model is able to represent the hierarchical features and thereby it improves the stability and reproducibility of the classifier models." @default.
- W4309375094 created "2022-11-26" @default.
- W4309375094 creator A5006145282 @default.
- W4309375094 creator A5016475473 @default.
- W4309375094 creator A5067593236 @default.
- W4309375094 creator A5078662566 @default.
- W4309375094 date "2022-10-09" @default.
- W4309375094 modified "2023-10-18" @default.
- W4309375094 title "CT Image Classification Based on Stacked Ensemble Of Convolutional Neural Networks" @default.
- W4309375094 cites W2044097773 @default.
- W4309375094 cites W2048438788 @default.
- W4309375094 cites W2058307353 @default.
- W4309375094 cites W2194775991 @default.
- W4309375094 cites W2772670363 @default.
- W4309375094 cites W2804035092 @default.
- W4309375094 cites W2887063112 @default.
- W4309375094 cites W2905017682 @default.
- W4309375094 cites W2905483812 @default.
- W4309375094 cites W2912885887 @default.
- W4309375094 cites W2954550142 @default.
- W4309375094 cites W2963163009 @default.
- W4309375094 cites W2986984881 @default.
- W4309375094 cites W3015700148 @default.
- W4309375094 cites W3028231159 @default.
- W4309375094 cites W3086039674 @default.
- W4309375094 cites W3102476541 @default.
- W4309375094 cites W3128580531 @default.
- W4309375094 cites W3137494889 @default.
- W4309375094 cites W3164777365 @default.
- W4309375094 cites W4205581336 @default.
- W4309375094 cites W4205592466 @default.
- W4309375094 cites W4205953230 @default.
- W4309375094 cites W4206410067 @default.
- W4309375094 doi "https://doi.org/10.1109/smc53654.2022.9945565" @default.
- W4309375094 hasPublicationYear "2022" @default.
- W4309375094 type Work @default.
- W4309375094 citedByCount "1" @default.
- W4309375094 crossrefType "proceedings-article" @default.
- W4309375094 hasAuthorship W4309375094A5006145282 @default.
- W4309375094 hasAuthorship W4309375094A5016475473 @default.
- W4309375094 hasAuthorship W4309375094A5067593236 @default.
- W4309375094 hasAuthorship W4309375094A5078662566 @default.
- W4309375094 hasConcept C108583219 @default.
- W4309375094 hasConcept C115961682 @default.
- W4309375094 hasConcept C119857082 @default.
- W4309375094 hasConcept C119898033 @default.
- W4309375094 hasConcept C138885662 @default.
- W4309375094 hasConcept C153180895 @default.
- W4309375094 hasConcept C154945302 @default.
- W4309375094 hasConcept C2776401178 @default.
- W4309375094 hasConcept C31601959 @default.
- W4309375094 hasConcept C41008148 @default.
- W4309375094 hasConcept C41895202 @default.
- W4309375094 hasConcept C45942800 @default.
- W4309375094 hasConcept C75294576 @default.
- W4309375094 hasConcept C81363708 @default.
- W4309375094 hasConcept C95623464 @default.
- W4309375094 hasConceptScore W4309375094C108583219 @default.
- W4309375094 hasConceptScore W4309375094C115961682 @default.
- W4309375094 hasConceptScore W4309375094C119857082 @default.
- W4309375094 hasConceptScore W4309375094C119898033 @default.
- W4309375094 hasConceptScore W4309375094C138885662 @default.
- W4309375094 hasConceptScore W4309375094C153180895 @default.
- W4309375094 hasConceptScore W4309375094C154945302 @default.
- W4309375094 hasConceptScore W4309375094C2776401178 @default.
- W4309375094 hasConceptScore W4309375094C31601959 @default.
- W4309375094 hasConceptScore W4309375094C41008148 @default.
- W4309375094 hasConceptScore W4309375094C41895202 @default.
- W4309375094 hasConceptScore W4309375094C45942800 @default.
- W4309375094 hasConceptScore W4309375094C75294576 @default.
- W4309375094 hasConceptScore W4309375094C81363708 @default.
- W4309375094 hasConceptScore W4309375094C95623464 @default.
- W4309375094 hasLocation W43093750941 @default.
- W4309375094 hasOpenAccess W4309375094 @default.
- W4309375094 hasPrimaryLocation W43093750941 @default.
- W4309375094 hasRelatedWork W2732542196 @default.
- W4309375094 hasRelatedWork W2760085659 @default.
- W4309375094 hasRelatedWork W3136076031 @default.
- W4309375094 hasRelatedWork W3156786002 @default.
- W4309375094 hasRelatedWork W3158264953 @default.
- W4309375094 hasRelatedWork W3162132941 @default.
- W4309375094 hasRelatedWork W4221040317 @default.
- W4309375094 hasRelatedWork W4281780675 @default.
- W4309375094 hasRelatedWork W4308112567 @default.
- W4309375094 hasRelatedWork W4309375094 @default.
- W4309375094 isParatext "false" @default.
- W4309375094 isRetracted "false" @default.
- W4309375094 workType "article" @default.