Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309391083> ?p ?o ?g. }
- W4309391083 abstract "Accurately predicting the concentration of PM2.5 (fine particles with a diameter of 2.5 μm or less) is essential for health risk assessment and formulation of air pollution control strategies. At present, there is also a large amount of air pollution data. How to efficiently mine its hidden features to obtain the future concentration of pollutants is very important for the prevention and control of air pollution. Therefore we build a pollutant prediction model based on Lightweight Gradient Boosting Model (LightGBM) shallow machine learning and Long Short-Term Memory (LSTM) neural network. Firstly, the PM2.5 pollutant concentration data of 34 air quality stations in Beijing and the data of 18 weather stations were matched in time and space to obtain an input data set. Subsequently, the input data set was cleaned and preprocessed, and the training set was obtained by methods such as input feature extraction, input factor normalization, and data outlier processing. The hourly PM2.5 concentration value prediction was achieved in accordance with experiments conducted with the hourly PM2.5 data of Beijing from January 1, 2018 to October 1, 2020. Ultimately, the optimal hourly series prediction results were obtained after model comparisons. Through the comparison of these two models, it is found that the RMSE predicted by LSTM model for each pollutant is nearly 50% lower than that of LightGBM, and is more consistent with the fitting curve between the actual observations. The exploration of the input step size of LSTM model found that the accuracy of 3-h input data was higher than that of 12-h input data. It can be used for the management and decision-making of environmental protection departments and the formulation of preventive measures for emergency pollution incidents." @default.
- W4309391083 created "2022-11-26" @default.
- W4309391083 creator A5013038112 @default.
- W4309391083 creator A5020997418 @default.
- W4309391083 creator A5031706167 @default.
- W4309391083 creator A5033393950 @default.
- W4309391083 creator A5049264813 @default.
- W4309391083 creator A5057055806 @default.
- W4309391083 creator A5089296080 @default.
- W4309391083 date "2022-11-19" @default.
- W4309391083 modified "2023-09-27" @default.
- W4309391083 title "Identifying a suitable model for predicting hourly pollutant concentrations by using low-cost microstation data and machine learning" @default.
- W4309391083 cites W1967333634 @default.
- W4309391083 cites W1975086456 @default.
- W4309391083 cites W2012922494 @default.
- W4309391083 cites W2045824543 @default.
- W4309391083 cites W2067227550 @default.
- W4309391083 cites W2077865456 @default.
- W4309391083 cites W2088286444 @default.
- W4309391083 cites W2099310231 @default.
- W4309391083 cites W2128568839 @default.
- W4309391083 cites W2140282454 @default.
- W4309391083 cites W2141970008 @default.
- W4309391083 cites W2166604768 @default.
- W4309391083 cites W2267076517 @default.
- W4309391083 cites W2435390932 @default.
- W4309391083 cites W2736216772 @default.
- W4309391083 cites W2769216987 @default.
- W4309391083 cites W2799436412 @default.
- W4309391083 cites W2799476458 @default.
- W4309391083 cites W2885442465 @default.
- W4309391083 cites W2898924913 @default.
- W4309391083 cites W2902363804 @default.
- W4309391083 cites W2936386745 @default.
- W4309391083 cites W2968010664 @default.
- W4309391083 cites W2972918042 @default.
- W4309391083 cites W2982556279 @default.
- W4309391083 cites W2985122652 @default.
- W4309391083 cites W3028209913 @default.
- W4309391083 cites W3041799800 @default.
- W4309391083 cites W3111134894 @default.
- W4309391083 cites W3116586228 @default.
- W4309391083 cites W3119897818 @default.
- W4309391083 cites W3120669297 @default.
- W4309391083 cites W3122276914 @default.
- W4309391083 cites W3131058205 @default.
- W4309391083 cites W4220949976 @default.
- W4309391083 cites W4233619925 @default.
- W4309391083 doi "https://doi.org/10.1038/s41598-022-24470-5" @default.
- W4309391083 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36402807" @default.
- W4309391083 hasPublicationYear "2022" @default.
- W4309391083 type Work @default.
- W4309391083 citedByCount "0" @default.
- W4309391083 crossrefType "journal-article" @default.
- W4309391083 hasAuthorship W4309391083A5013038112 @default.
- W4309391083 hasAuthorship W4309391083A5020997418 @default.
- W4309391083 hasAuthorship W4309391083A5031706167 @default.
- W4309391083 hasAuthorship W4309391083A5033393950 @default.
- W4309391083 hasAuthorship W4309391083A5049264813 @default.
- W4309391083 hasAuthorship W4309391083A5057055806 @default.
- W4309391083 hasAuthorship W4309391083A5089296080 @default.
- W4309391083 hasBestOaLocation W43093910831 @default.
- W4309391083 hasConcept C105795698 @default.
- W4309391083 hasConcept C119857082 @default.
- W4309391083 hasConcept C121332964 @default.
- W4309391083 hasConcept C124101348 @default.
- W4309391083 hasConcept C126314574 @default.
- W4309391083 hasConcept C136886441 @default.
- W4309391083 hasConcept C139945424 @default.
- W4309391083 hasConcept C144024400 @default.
- W4309391083 hasConcept C153294291 @default.
- W4309391083 hasConcept C154945302 @default.
- W4309391083 hasConcept C169258074 @default.
- W4309391083 hasConcept C17744445 @default.
- W4309391083 hasConcept C178790620 @default.
- W4309391083 hasConcept C185592680 @default.
- W4309391083 hasConcept C19165224 @default.
- W4309391083 hasConcept C191935318 @default.
- W4309391083 hasConcept C199539241 @default.
- W4309391083 hasConcept C2778304055 @default.
- W4309391083 hasConcept C33923547 @default.
- W4309391083 hasConcept C39432304 @default.
- W4309391083 hasConcept C41008148 @default.
- W4309391083 hasConcept C45804977 @default.
- W4309391083 hasConcept C46686674 @default.
- W4309391083 hasConcept C50644808 @default.
- W4309391083 hasConcept C58489278 @default.
- W4309391083 hasConcept C70153297 @default.
- W4309391083 hasConcept C79337645 @default.
- W4309391083 hasConcept C82685317 @default.
- W4309391083 hasConceptScore W4309391083C105795698 @default.
- W4309391083 hasConceptScore W4309391083C119857082 @default.
- W4309391083 hasConceptScore W4309391083C121332964 @default.
- W4309391083 hasConceptScore W4309391083C124101348 @default.
- W4309391083 hasConceptScore W4309391083C126314574 @default.
- W4309391083 hasConceptScore W4309391083C136886441 @default.
- W4309391083 hasConceptScore W4309391083C139945424 @default.
- W4309391083 hasConceptScore W4309391083C144024400 @default.
- W4309391083 hasConceptScore W4309391083C153294291 @default.
- W4309391083 hasConceptScore W4309391083C154945302 @default.