Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309391566> ?p ?o ?g. }
- W4309391566 endingPage "215" @default.
- W4309391566 startingPage "198" @default.
- W4309391566 abstract "We propose a novel joint deblurring and multi-frame interpolation (DeMFI) framework in a two-stage manner, called DeMFI-Net, which converts blurry videos of lower-frame-rate to sharp videos at higher-frame-rate based on flow-guided attentive-correlation-based feature bolstering (FAC-FB) module and recursive boosting (RB), in terms of multi-frame interpolation (MFI). Its baseline version performs feature-flow-based warping with FAC-FB module to obtain a sharp-interpolated frame as well to deblur two center-input frames. Its extended version further improves the joint performance based on pixel-flow-based warping with GRU-based RB. Our FAC-FB module effectively gathers the distributed blurry pixel information over blurry input frames in feature-domain to improve the joint performances. RB trained with recursive boosting loss enables DeMFI-Net to adequately select smaller RB iterations for a faster runtime during inference, even after the training is finished. As a result, our DeMFI-Net achieves state-of-the-art (SOTA) performances for diverse datasets with significant margins compared to recent joint methods. All source codes, including pretrained DeMFI-Net, are publicly available at https://github.com/JihyongOh/DeMFI ." @default.
- W4309391566 created "2022-11-26" @default.
- W4309391566 creator A5027012300 @default.
- W4309391566 creator A5090121183 @default.
- W4309391566 date "2022-01-01" @default.
- W4309391566 modified "2023-09-30" @default.
- W4309391566 title "DeMFI: Deep Joint Deblurring and Multi-frame Interpolation with Flow-Guided Attentive Correlation and Recursive Boosting" @default.
- W4309391566 cites W1528563793 @default.
- W4309391566 cites W1598936309 @default.
- W4309391566 cites W1901129140 @default.
- W4309391566 cites W1999586248 @default.
- W4309391566 cites W2062679213 @default.
- W4309391566 cites W2157331557 @default.
- W4309391566 cites W2324190721 @default.
- W4309391566 cites W2474628748 @default.
- W4309391566 cites W2560533888 @default.
- W4309391566 cites W2586480386 @default.
- W4309391566 cites W2601564443 @default.
- W4309391566 cites W2738579427 @default.
- W4309391566 cites W2776004874 @default.
- W4309391566 cites W2949258649 @default.
- W4309391566 cites W2949903291 @default.
- W4309391566 cites W2961218591 @default.
- W4309391566 cites W2963093735 @default.
- W4309391566 cites W2963268050 @default.
- W4309391566 cites W2963782415 @default.
- W4309391566 cites W2964030969 @default.
- W4309391566 cites W2964317599 @default.
- W4309391566 cites W2965217508 @default.
- W4309391566 cites W2965669158 @default.
- W4309391566 cites W2972708139 @default.
- W4309391566 cites W2997058852 @default.
- W4309391566 cites W2997150500 @default.
- W4309391566 cites W2998095399 @default.
- W4309391566 cites W3034365816 @default.
- W4309391566 cites W3034475761 @default.
- W4309391566 cites W3034769793 @default.
- W4309391566 cites W3034850705 @default.
- W4309391566 cites W3034921716 @default.
- W4309391566 cites W3035236663 @default.
- W4309391566 cites W3035239272 @default.
- W4309391566 cites W3035484352 @default.
- W4309391566 cites W3092954151 @default.
- W4309391566 cites W3093013777 @default.
- W4309391566 cites W3101403537 @default.
- W4309391566 cites W3101787898 @default.
- W4309391566 cites W3107405705 @default.
- W4309391566 cites W3109908659 @default.
- W4309391566 cites W3109922497 @default.
- W4309391566 cites W3110612869 @default.
- W4309391566 cites W3123632567 @default.
- W4309391566 cites W3128053054 @default.
- W4309391566 cites W3176266346 @default.
- W4309391566 cites W3177415989 @default.
- W4309391566 cites W3192083819 @default.
- W4309391566 cites W3203041407 @default.
- W4309391566 cites W4214626557 @default.
- W4309391566 doi "https://doi.org/10.1007/978-3-031-20071-7_12" @default.
- W4309391566 hasPublicationYear "2022" @default.
- W4309391566 type Work @default.
- W4309391566 citedByCount "3" @default.
- W4309391566 countsByYear W43093915662022 @default.
- W4309391566 countsByYear W43093915662023 @default.
- W4309391566 crossrefType "book-chapter" @default.
- W4309391566 hasAuthorship W4309391566A5027012300 @default.
- W4309391566 hasAuthorship W4309391566A5090121183 @default.
- W4309391566 hasBestOaLocation W43093915662 @default.
- W4309391566 hasConcept C106430172 @default.
- W4309391566 hasConcept C11413529 @default.
- W4309391566 hasConcept C115961682 @default.
- W4309391566 hasConcept C126042441 @default.
- W4309391566 hasConcept C127413603 @default.
- W4309391566 hasConcept C137800194 @default.
- W4309391566 hasConcept C138885662 @default.
- W4309391566 hasConcept C153180895 @default.
- W4309391566 hasConcept C154945302 @default.
- W4309391566 hasConcept C157202957 @default.
- W4309391566 hasConcept C160633673 @default.
- W4309391566 hasConcept C170154142 @default.
- W4309391566 hasConcept C18555067 @default.
- W4309391566 hasConcept C205203396 @default.
- W4309391566 hasConcept C27405340 @default.
- W4309391566 hasConcept C2776401178 @default.
- W4309391566 hasConcept C2777693668 @default.
- W4309391566 hasConcept C31972630 @default.
- W4309391566 hasConcept C3261483 @default.
- W4309391566 hasConcept C41008148 @default.
- W4309391566 hasConcept C41895202 @default.
- W4309391566 hasConcept C46686674 @default.
- W4309391566 hasConcept C76155785 @default.
- W4309391566 hasConcept C9417928 @default.
- W4309391566 hasConceptScore W4309391566C106430172 @default.
- W4309391566 hasConceptScore W4309391566C11413529 @default.
- W4309391566 hasConceptScore W4309391566C115961682 @default.
- W4309391566 hasConceptScore W4309391566C126042441 @default.
- W4309391566 hasConceptScore W4309391566C127413603 @default.
- W4309391566 hasConceptScore W4309391566C137800194 @default.
- W4309391566 hasConceptScore W4309391566C138885662 @default.