Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309396811> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4309396811 abstract "Neoadjuvant chemotherapy (NAC) can downstage tumors and axillary lymph nodes in breast cancer (BC) patients. However, tumors and axillary response to NAC are not parallel and vary among patients. This study aims to explore the feasibility of deep learning radiomics nomogram (DLRN) for independently predicting the status of tumors and lymph node metastasis (LNM) after NAC.In total, 484 BC patients who completed NAC from two hospitals (H1: 297 patients in the training cohort and 99 patients in the validation cohort; H2: 88 patients in the test cohort) were retrospectively enrolled. The authors developed two deep learning radiomics (DLR) models for personalized prediction of the tumor pathologic complete response (PCR) to NAC (DLR-PCR) and the LNM status (DLR-LNM) after NAC based on pre-NAC and after-NAC ultrasonography images. Furthermore, they proposed two DLRNs (DLRN-PCR and DLRN-LNM) for two different tasks based on the clinical characteristics and DLR scores, which were generated from both DLR-PCR and DLR-LNM.In the validation and test cohorts, DLRN-PCR exhibited areas under the receiver operating characteristic curves (AUCs) of 0.903 and 0.896 with sensitivities of 91.2% and 75.0%, respectively. DLRN-LNM achieved AUCs of 0.853 and 0.863, specificities of 82.0% and 81.8%, and negative predictive values of 81.3% and 87.2% in the validation and test cohorts, respectively. The two DLRN models achieved satisfactory predictive performance based on different BC subtypes.The proposed DLRN models have the potential to accurately predict the tumor PCR and LNM status after NAC.In this study, we proposed two deep learning radiomics nomogram models based on pre-neoadjuvant chemotherapy (NAC) and preoperative ultrasonography images for independently predicting the status of tumor and axillary lymph node (ALN) after NAC. A more comprehensive assessment of the patient's condition after NAC can be achieved by predicting the status of the tumor and ALN separately. Our model can potentially provide a noninvasive and personalized method to offer decision support for organ preservation and avoidance of excessive surgery." @default.
- W4309396811 created "2022-11-26" @default.
- W4309396811 creator A5014258868 @default.
- W4309396811 creator A5015676600 @default.
- W4309396811 creator A5016874780 @default.
- W4309396811 creator A5018412765 @default.
- W4309396811 creator A5021833361 @default.
- W4309396811 creator A5030691366 @default.
- W4309396811 creator A5036796352 @default.
- W4309396811 creator A5037677450 @default.
- W4309396811 creator A5059446493 @default.
- W4309396811 creator A5064121992 @default.
- W4309396811 creator A5068732609 @default.
- W4309396811 creator A5071593501 @default.
- W4309396811 date "2022-11-19" @default.
- W4309396811 modified "2023-10-05" @default.
- W4309396811 title "Deep learning radiomics of ultrasonography for comprehensively predicting tumor and axillary lymph node status after neoadjuvant chemotherapy in breast cancer patients: A multicenter study" @default.
- W4309396811 cites W2038833688 @default.
- W4309396811 cites W2046861708 @default.
- W4309396811 cites W2053074390 @default.
- W4309396811 cites W2087179076 @default.
- W4309396811 cites W2104337757 @default.
- W4309396811 cites W2128739912 @default.
- W4309396811 cites W2189230202 @default.
- W4309396811 cites W2916703039 @default.
- W4309396811 cites W2983427812 @default.
- W4309396811 cites W3010197652 @default.
- W4309396811 cites W3040996782 @default.
- W4309396811 cites W3128646645 @default.
- W4309396811 cites W3132834592 @default.
- W4309396811 cites W3135724915 @default.
- W4309396811 doi "https://doi.org/10.1002/cncr.34540" @default.
- W4309396811 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36401611" @default.
- W4309396811 hasPublicationYear "2022" @default.
- W4309396811 type Work @default.
- W4309396811 citedByCount "6" @default.
- W4309396811 countsByYear W43093968112023 @default.
- W4309396811 crossrefType "journal-article" @default.
- W4309396811 hasAuthorship W4309396811A5014258868 @default.
- W4309396811 hasAuthorship W4309396811A5015676600 @default.
- W4309396811 hasAuthorship W4309396811A5016874780 @default.
- W4309396811 hasAuthorship W4309396811A5018412765 @default.
- W4309396811 hasAuthorship W4309396811A5021833361 @default.
- W4309396811 hasAuthorship W4309396811A5030691366 @default.
- W4309396811 hasAuthorship W4309396811A5036796352 @default.
- W4309396811 hasAuthorship W4309396811A5037677450 @default.
- W4309396811 hasAuthorship W4309396811A5059446493 @default.
- W4309396811 hasAuthorship W4309396811A5064121992 @default.
- W4309396811 hasAuthorship W4309396811A5068732609 @default.
- W4309396811 hasAuthorship W4309396811A5071593501 @default.
- W4309396811 hasConcept C121608353 @default.
- W4309396811 hasConcept C126322002 @default.
- W4309396811 hasConcept C126838900 @default.
- W4309396811 hasConcept C143998085 @default.
- W4309396811 hasConcept C2777649267 @default.
- W4309396811 hasConcept C2778292576 @default.
- W4309396811 hasConcept C2780212769 @default.
- W4309396811 hasConcept C2780849966 @default.
- W4309396811 hasConcept C34626388 @default.
- W4309396811 hasConcept C530470458 @default.
- W4309396811 hasConcept C58471807 @default.
- W4309396811 hasConcept C71924100 @default.
- W4309396811 hasConcept C72563966 @default.
- W4309396811 hasConceptScore W4309396811C121608353 @default.
- W4309396811 hasConceptScore W4309396811C126322002 @default.
- W4309396811 hasConceptScore W4309396811C126838900 @default.
- W4309396811 hasConceptScore W4309396811C143998085 @default.
- W4309396811 hasConceptScore W4309396811C2777649267 @default.
- W4309396811 hasConceptScore W4309396811C2778292576 @default.
- W4309396811 hasConceptScore W4309396811C2780212769 @default.
- W4309396811 hasConceptScore W4309396811C2780849966 @default.
- W4309396811 hasConceptScore W4309396811C34626388 @default.
- W4309396811 hasConceptScore W4309396811C530470458 @default.
- W4309396811 hasConceptScore W4309396811C58471807 @default.
- W4309396811 hasConceptScore W4309396811C71924100 @default.
- W4309396811 hasConceptScore W4309396811C72563966 @default.
- W4309396811 hasLocation W43093968111 @default.
- W4309396811 hasLocation W43093968112 @default.
- W4309396811 hasOpenAccess W4309396811 @default.
- W4309396811 hasPrimaryLocation W43093968111 @default.
- W4309396811 hasRelatedWork W2153970681 @default.
- W4309396811 hasRelatedWork W2356472297 @default.
- W4309396811 hasRelatedWork W2358175358 @default.
- W4309396811 hasRelatedWork W2363804192 @default.
- W4309396811 hasRelatedWork W2380145495 @default.
- W4309396811 hasRelatedWork W2947967858 @default.
- W4309396811 hasRelatedWork W3042648814 @default.
- W4309396811 hasRelatedWork W3112605545 @default.
- W4309396811 hasRelatedWork W4292307375 @default.
- W4309396811 hasRelatedWork W4307042009 @default.
- W4309396811 isParatext "false" @default.
- W4309396811 isRetracted "false" @default.
- W4309396811 workType "article" @default.