Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309432946> ?p ?o ?g. }
- W4309432946 endingPage "14800" @default.
- W4309432946 startingPage "14800" @default.
- W4309432946 abstract "Predicting construction cost of rework (COR) allows for the advanced planning and prompt implementation of appropriate countermeasures. Studies have addressed the causation and different impacts of COR but have not yet developed the robust cost predictors required to detect rare construction rework items with a high-cost impact. In this study, two ensemble learning methods (soft and hard voting classifiers) are utilized for nonconformance construction reports (NCRs) and compared with the literature on nine machine learning (ML) approaches. The ensemble voting classifiers leverage the advantage of the ML approaches, creating a robust estimator that is responsive to underrepresented high-cost impact classes. The results demonstrate the improved performance of the adopted ensemble voting classifiers in terms of accuracy for different cost impact classes. The developed COR impact predictor increases the reliability and accuracy of the cost estimation, enabling dynamic cost variation analysis and thus improving cost-based decision making." @default.
- W4309432946 created "2022-11-27" @default.
- W4309432946 creator A5006665841 @default.
- W4309432946 creator A5024822992 @default.
- W4309432946 creator A5046405071 @default.
- W4309432946 creator A5061912718 @default.
- W4309432946 date "2022-11-09" @default.
- W4309432946 modified "2023-10-18" @default.
- W4309432946 title "Predicting the Impact of Construction Rework Cost Using an Ensemble Classifier" @default.
- W4309432946 cites W1967311507 @default.
- W4309432946 cites W1973225330 @default.
- W4309432946 cites W1982870854 @default.
- W4309432946 cites W1991058155 @default.
- W4309432946 cites W2012174067 @default.
- W4309432946 cites W2012955764 @default.
- W4309432946 cites W2013323185 @default.
- W4309432946 cites W2025813880 @default.
- W4309432946 cites W2026848850 @default.
- W4309432946 cites W2051233804 @default.
- W4309432946 cites W2057373637 @default.
- W4309432946 cites W2068109052 @default.
- W4309432946 cites W2077424831 @default.
- W4309432946 cites W2080136349 @default.
- W4309432946 cites W2094527006 @default.
- W4309432946 cites W2098368104 @default.
- W4309432946 cites W2103328477 @default.
- W4309432946 cites W2126453218 @default.
- W4309432946 cites W2133658999 @default.
- W4309432946 cites W2151471729 @default.
- W4309432946 cites W2161087710 @default.
- W4309432946 cites W2487605565 @default.
- W4309432946 cites W2529041510 @default.
- W4309432946 cites W2529476616 @default.
- W4309432946 cites W2773972523 @default.
- W4309432946 cites W2792732206 @default.
- W4309432946 cites W2882990022 @default.
- W4309432946 cites W2888218104 @default.
- W4309432946 cites W2899492604 @default.
- W4309432946 cites W2911437556 @default.
- W4309432946 cites W2916529587 @default.
- W4309432946 cites W2922187519 @default.
- W4309432946 cites W2947192779 @default.
- W4309432946 cites W2984898632 @default.
- W4309432946 cites W3031365063 @default.
- W4309432946 cites W3035948037 @default.
- W4309432946 cites W3080074050 @default.
- W4309432946 cites W3096925087 @default.
- W4309432946 cites W3099878876 @default.
- W4309432946 cites W3118929199 @default.
- W4309432946 cites W3167083276 @default.
- W4309432946 cites W3175916092 @default.
- W4309432946 cites W3187713758 @default.
- W4309432946 cites W3189724743 @default.
- W4309432946 cites W3204741078 @default.
- W4309432946 cites W4200014717 @default.
- W4309432946 cites W4210481194 @default.
- W4309432946 cites W4211107692 @default.
- W4309432946 cites W4214838030 @default.
- W4309432946 cites W4229017559 @default.
- W4309432946 cites W4281608642 @default.
- W4309432946 cites W4281626586 @default.
- W4309432946 cites W4281874032 @default.
- W4309432946 cites W4282839789 @default.
- W4309432946 cites W4293776638 @default.
- W4309432946 cites W4297533947 @default.
- W4309432946 cites W4299647278 @default.
- W4309432946 doi "https://doi.org/10.3390/su142214800" @default.
- W4309432946 hasPublicationYear "2022" @default.
- W4309432946 type Work @default.
- W4309432946 citedByCount "5" @default.
- W4309432946 countsByYear W43094329462023 @default.
- W4309432946 crossrefType "journal-article" @default.
- W4309432946 hasAuthorship W4309432946A5006665841 @default.
- W4309432946 hasAuthorship W4309432946A5024822992 @default.
- W4309432946 hasAuthorship W4309432946A5046405071 @default.
- W4309432946 hasAuthorship W4309432946A5061912718 @default.
- W4309432946 hasBestOaLocation W43094329461 @default.
- W4309432946 hasConcept C119857082 @default.
- W4309432946 hasConcept C127413603 @default.
- W4309432946 hasConcept C144133560 @default.
- W4309432946 hasConcept C149635348 @default.
- W4309432946 hasConcept C154945302 @default.
- W4309432946 hasConcept C162853370 @default.
- W4309432946 hasConcept C17744445 @default.
- W4309432946 hasConcept C199539241 @default.
- W4309432946 hasConcept C201995342 @default.
- W4309432946 hasConcept C2776543023 @default.
- W4309432946 hasConcept C41008148 @default.
- W4309432946 hasConcept C45942800 @default.
- W4309432946 hasConcept C520049643 @default.
- W4309432946 hasConcept C86251818 @default.
- W4309432946 hasConcept C93983250 @default.
- W4309432946 hasConcept C94625758 @default.
- W4309432946 hasConcept C95623464 @default.
- W4309432946 hasConceptScore W4309432946C119857082 @default.
- W4309432946 hasConceptScore W4309432946C127413603 @default.
- W4309432946 hasConceptScore W4309432946C144133560 @default.
- W4309432946 hasConceptScore W4309432946C149635348 @default.