Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309451605> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4309451605 endingPage "552" @default.
- W4309451605 startingPage "531" @default.
- W4309451605 abstract "Abstract The fractional oscillation equation with two fractional derivative terms in the sense of Caputo, where the orders $$alpha$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>α</mml:mi> </mml:math> and $$beta$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>β</mml:mi> </mml:math> satisfy $$1<alpha le 2$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo><</mml:mo> <mml:mi>α</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> and $$0<beta le 1$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo><</mml:mo> <mml:mi>β</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> , is investigated, and the unit step response and two initial value responses are obtained in two forms by using different methods of inverse Laplace transform. The first method yields series solutions with the nonnegative powers of t , which converge fast for small t . The second method is our emphasis, where the complex path integral formula of the inverse Laplace transform is used. In order to determine singularities of integrand we first seek for the roots of the characteristic equation, which is a transcendental equation with four parameters, two coefficients and two noninteger power exponents. The existence conditions and properties of the roots on the principal Riemann surface are given. Based on the results on the characteristic equation, we derive these responses as a sum of a classical exponentially damped oscillation, which vanishes in an indicated case, and an infinite integral of the Laplace type, which converges fast for large t , with a steady component in the unit step response. Asymptotic behaviors of solutions for large t are derived as algebraic decays in negative power laws characterized by the orders $$alpha$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>α</mml:mi> </mml:math> and $$beta$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>β</mml:mi> </mml:math> . The fractional system exhibits a magical transition from oscillation to monotonic decay in negative power law." @default.
- W4309451605 created "2022-11-28" @default.
- W4309451605 creator A5003590800 @default.
- W4309451605 creator A5015667856 @default.
- W4309451605 creator A5072012551 @default.
- W4309451605 date "2022-11-16" @default.
- W4309451605 modified "2023-10-14" @default.
- W4309451605 title "Exact Solutions of Fractional Order Oscillation Equation with Two Fractional Derivative Terms" @default.
- W4309451605 cites W144919191 @default.
- W4309451605 cites W1985438383 @default.
- W4309451605 cites W2005304548 @default.
- W4309451605 cites W2009047803 @default.
- W4309451605 cites W2030871525 @default.
- W4309451605 cites W2034827312 @default.
- W4309451605 cites W2051267624 @default.
- W4309451605 cites W2055701161 @default.
- W4309451605 cites W2068245297 @default.
- W4309451605 cites W2068932649 @default.
- W4309451605 cites W2070188088 @default.
- W4309451605 cites W2073316803 @default.
- W4309451605 cites W2080296395 @default.
- W4309451605 cites W2080455786 @default.
- W4309451605 cites W2105058408 @default.
- W4309451605 cites W2218304445 @default.
- W4309451605 cites W2477921776 @default.
- W4309451605 cites W2518477744 @default.
- W4309451605 cites W2599929105 @default.
- W4309451605 cites W2789423153 @default.
- W4309451605 cites W2891549714 @default.
- W4309451605 cites W2985775333 @default.
- W4309451605 cites W3009862352 @default.
- W4309451605 cites W3105177325 @default.
- W4309451605 cites W3112161323 @default.
- W4309451605 cites W3117695231 @default.
- W4309451605 cites W3143141409 @default.
- W4309451605 cites W3155618043 @default.
- W4309451605 cites W3178676905 @default.
- W4309451605 cites W3210471339 @default.
- W4309451605 cites W4200269323 @default.
- W4309451605 cites W4231936504 @default.
- W4309451605 cites W4239838448 @default.
- W4309451605 cites W4281941023 @default.
- W4309451605 doi "https://doi.org/10.1007/s44198-022-00095-0" @default.
- W4309451605 hasPublicationYear "2022" @default.
- W4309451605 type Work @default.
- W4309451605 citedByCount "0" @default.
- W4309451605 crossrefType "journal-article" @default.
- W4309451605 hasAuthorship W4309451605A5003590800 @default.
- W4309451605 hasAuthorship W4309451605A5015667856 @default.
- W4309451605 hasAuthorship W4309451605A5072012551 @default.
- W4309451605 hasBestOaLocation W43094516051 @default.
- W4309451605 hasConcept C11413529 @default.
- W4309451605 hasConcept C33923547 @default.
- W4309451605 hasConceptScore W4309451605C11413529 @default.
- W4309451605 hasConceptScore W4309451605C33923547 @default.
- W4309451605 hasFunder F4320321001 @default.
- W4309451605 hasIssue "2" @default.
- W4309451605 hasLocation W43094516051 @default.
- W4309451605 hasOpenAccess W4309451605 @default.
- W4309451605 hasPrimaryLocation W43094516051 @default.
- W4309451605 hasRelatedWork W1587224694 @default.
- W4309451605 hasRelatedWork W1979597421 @default.
- W4309451605 hasRelatedWork W2007980826 @default.
- W4309451605 hasRelatedWork W2061531152 @default.
- W4309451605 hasRelatedWork W2077600819 @default.
- W4309451605 hasRelatedWork W2142036596 @default.
- W4309451605 hasRelatedWork W2911598644 @default.
- W4309451605 hasRelatedWork W3002753104 @default.
- W4309451605 hasRelatedWork W4225152035 @default.
- W4309451605 hasRelatedWork W4245490552 @default.
- W4309451605 hasVolume "30" @default.
- W4309451605 isParatext "false" @default.
- W4309451605 isRetracted "false" @default.
- W4309451605 workType "article" @default.