Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309455070> ?p ?o ?g. }
- W4309455070 endingPage "8932" @default.
- W4309455070 startingPage "8932" @default.
- W4309455070 abstract "Distresses, such as cracks, directly reflect the structural integrity of subway tunnels. Therefore, the detection of subway tunnel distress is an essential task in tunnel structure maintenance. This paper presents the performance improvement of deep learning-based distress detection to support the maintenance of subway tunnels through a new data augmentation method, selective image cropping and patching (SICAP). Specifically, we generate effective data for training the distress detection model by focusing on the distressed regions via SICAP. After the data augmentation, we train a distress detection model using the expanded training data. The new image generated based on SICAP does not change the pixel values of the original image. Thus, there is little loss of information, and the generated images are effective in constructing a robust model for various subway tunnel lines. We conducted experiments with some comparative methods. The experimental results show that the detection performance can be improved by our data augmentation." @default.
- W4309455070 created "2022-11-28" @default.
- W4309455070 creator A5002757875 @default.
- W4309455070 creator A5009032240 @default.
- W4309455070 creator A5033215072 @default.
- W4309455070 creator A5042184893 @default.
- W4309455070 creator A5061280755 @default.
- W4309455070 creator A5063903016 @default.
- W4309455070 date "2022-11-18" @default.
- W4309455070 modified "2023-10-01" @default.
- W4309455070 title "Distress Detection in Subway Tunnel Images via Data Augmentation Based on Selective Image Cropping and Patching" @default.
- W4309455070 cites W1590784253 @default.
- W4309455070 cites W1903029394 @default.
- W4309455070 cites W1973143425 @default.
- W4309455070 cites W2010820307 @default.
- W4309455070 cites W2022427525 @default.
- W4309455070 cites W2022974352 @default.
- W4309455070 cites W2063739723 @default.
- W4309455070 cites W2108598243 @default.
- W4309455070 cites W2109255472 @default.
- W4309455070 cites W2128880484 @default.
- W4309455070 cites W2137160061 @default.
- W4309455070 cites W2143458141 @default.
- W4309455070 cites W2194775991 @default.
- W4309455070 cites W2332793506 @default.
- W4309455070 cites W2407692387 @default.
- W4309455070 cites W2412782625 @default.
- W4309455070 cites W2421824464 @default.
- W4309455070 cites W2498401761 @default.
- W4309455070 cites W2523358814 @default.
- W4309455070 cites W2537717428 @default.
- W4309455070 cites W2560550165 @default.
- W4309455070 cites W2767258879 @default.
- W4309455070 cites W2789202602 @default.
- W4309455070 cites W2794351729 @default.
- W4309455070 cites W2799323087 @default.
- W4309455070 cites W2809016259 @default.
- W4309455070 cites W2852994473 @default.
- W4309455070 cites W2883774903 @default.
- W4309455070 cites W2889494142 @default.
- W4309455070 cites W2896969435 @default.
- W4309455070 cites W2905163589 @default.
- W4309455070 cites W2905467392 @default.
- W4309455070 cites W2913119512 @default.
- W4309455070 cites W2945463874 @default.
- W4309455070 cites W2954996726 @default.
- W4309455070 cites W2960163272 @default.
- W4309455070 cites W2970573874 @default.
- W4309455070 cites W3010407838 @default.
- W4309455070 cites W3036112213 @default.
- W4309455070 cites W3129394150 @default.
- W4309455070 cites W3153572303 @default.
- W4309455070 cites W3167386507 @default.
- W4309455070 cites W3176923149 @default.
- W4309455070 cites W3195101507 @default.
- W4309455070 cites W3212811752 @default.
- W4309455070 cites W4206591258 @default.
- W4309455070 cites W4307823382 @default.
- W4309455070 doi "https://doi.org/10.3390/s22228932" @default.
- W4309455070 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36433529" @default.
- W4309455070 hasPublicationYear "2022" @default.
- W4309455070 type Work @default.
- W4309455070 citedByCount "1" @default.
- W4309455070 countsByYear W43094550702023 @default.
- W4309455070 crossrefType "journal-article" @default.
- W4309455070 hasAuthorship W4309455070A5002757875 @default.
- W4309455070 hasAuthorship W4309455070A5009032240 @default.
- W4309455070 hasAuthorship W4309455070A5033215072 @default.
- W4309455070 hasAuthorship W4309455070A5042184893 @default.
- W4309455070 hasAuthorship W4309455070A5061280755 @default.
- W4309455070 hasAuthorship W4309455070A5063903016 @default.
- W4309455070 hasBestOaLocation W43094550701 @default.
- W4309455070 hasConcept C115961682 @default.
- W4309455070 hasConcept C118518473 @default.
- W4309455070 hasConcept C127413603 @default.
- W4309455070 hasConcept C13558536 @default.
- W4309455070 hasConcept C139265228 @default.
- W4309455070 hasConcept C154945302 @default.
- W4309455070 hasConcept C160633673 @default.
- W4309455070 hasConcept C18903297 @default.
- W4309455070 hasConcept C201995342 @default.
- W4309455070 hasConcept C2780451532 @default.
- W4309455070 hasConcept C31972630 @default.
- W4309455070 hasConcept C41008148 @default.
- W4309455070 hasConcept C86803240 @default.
- W4309455070 hasConceptScore W4309455070C115961682 @default.
- W4309455070 hasConceptScore W4309455070C118518473 @default.
- W4309455070 hasConceptScore W4309455070C127413603 @default.
- W4309455070 hasConceptScore W4309455070C13558536 @default.
- W4309455070 hasConceptScore W4309455070C139265228 @default.
- W4309455070 hasConceptScore W4309455070C154945302 @default.
- W4309455070 hasConceptScore W4309455070C160633673 @default.
- W4309455070 hasConceptScore W4309455070C18903297 @default.
- W4309455070 hasConceptScore W4309455070C201995342 @default.
- W4309455070 hasConceptScore W4309455070C2780451532 @default.
- W4309455070 hasConceptScore W4309455070C31972630 @default.
- W4309455070 hasConceptScore W4309455070C41008148 @default.
- W4309455070 hasConceptScore W4309455070C86803240 @default.