Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309455257> ?p ?o ?g. }
- W4309455257 endingPage "2827" @default.
- W4309455257 startingPage "2827" @default.
- W4309455257 abstract "Gastroesophageal reflux disease (GERD) is a common digestive tract disease, and most physicians use the Los Angeles classification and diagnose the severity of the disease to provide appropriate treatment. With the advancement of artificial intelligence, deep learning models have been used successfully to help physicians with clinical diagnosis. This study combines deep learning and machine learning techniques and proposes a two-stage process for endoscopic classification in GERD, including transfer learning techniques applied to the target dataset to extract more precise image features and machine learning algorithms to build the best classification model. The experimental results demonstrate that the performance of the GerdNet-RF model proposed in this work is better than that of previous studies. Test accuracy can be improved from 78.8% ± 8.5% to 92.5% ± 2.1%. By enhancing the automated diagnostic capabilities of AI models, patient health care will be more assured." @default.
- W4309455257 created "2022-11-28" @default.
- W4309455257 creator A5007136538 @default.
- W4309455257 creator A5035146175 @default.
- W4309455257 creator A5041466801 @default.
- W4309455257 creator A5047482051 @default.
- W4309455257 creator A5091274106 @default.
- W4309455257 date "2022-11-17" @default.
- W4309455257 modified "2023-10-14" @default.
- W4309455257 title "An Improved Endoscopic Automatic Classification Model for Gastroesophageal Reflux Disease Using Deep Learning Integrated Machine Learning" @default.
- W4309455257 cites W1987676367 @default.
- W4309455257 cites W1996790142 @default.
- W4309455257 cites W1998853939 @default.
- W4309455257 cites W2092887084 @default.
- W4309455257 cites W2108598243 @default.
- W4309455257 cites W2114442699 @default.
- W4309455257 cites W2162451141 @default.
- W4309455257 cites W2165698076 @default.
- W4309455257 cites W2194775991 @default.
- W4309455257 cites W2280615701 @default.
- W4309455257 cites W2558381168 @default.
- W4309455257 cites W2591504958 @default.
- W4309455257 cites W2774458438 @default.
- W4309455257 cites W2793079232 @default.
- W4309455257 cites W2803760365 @default.
- W4309455257 cites W2892773404 @default.
- W4309455257 cites W2903886348 @default.
- W4309455257 cites W2905167757 @default.
- W4309455257 cites W2911964244 @default.
- W4309455257 cites W2914473038 @default.
- W4309455257 cites W2964350391 @default.
- W4309455257 cites W3086083307 @default.
- W4309455257 cites W3134642121 @default.
- W4309455257 cites W3165085358 @default.
- W4309455257 cites W3180815602 @default.
- W4309455257 cites W3191855266 @default.
- W4309455257 cites W3210422245 @default.
- W4309455257 cites W3216394740 @default.
- W4309455257 cites W4210756392 @default.
- W4309455257 cites W4210860425 @default.
- W4309455257 cites W4286220516 @default.
- W4309455257 doi "https://doi.org/10.3390/diagnostics12112827" @default.
- W4309455257 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36428887" @default.
- W4309455257 hasPublicationYear "2022" @default.
- W4309455257 type Work @default.
- W4309455257 citedByCount "2" @default.
- W4309455257 countsByYear W43094552572023 @default.
- W4309455257 crossrefType "journal-article" @default.
- W4309455257 hasAuthorship W4309455257A5007136538 @default.
- W4309455257 hasAuthorship W4309455257A5035146175 @default.
- W4309455257 hasAuthorship W4309455257A5041466801 @default.
- W4309455257 hasAuthorship W4309455257A5047482051 @default.
- W4309455257 hasAuthorship W4309455257A5091274106 @default.
- W4309455257 hasBestOaLocation W43094552571 @default.
- W4309455257 hasConcept C108583219 @default.
- W4309455257 hasConcept C115961682 @default.
- W4309455257 hasConcept C119857082 @default.
- W4309455257 hasConcept C142724271 @default.
- W4309455257 hasConcept C150899416 @default.
- W4309455257 hasConcept C154945302 @default.
- W4309455257 hasConcept C2777014526 @default.
- W4309455257 hasConcept C2779134260 @default.
- W4309455257 hasConcept C41008148 @default.
- W4309455257 hasConcept C43270747 @default.
- W4309455257 hasConcept C71924100 @default.
- W4309455257 hasConcept C75294576 @default.
- W4309455257 hasConceptScore W4309455257C108583219 @default.
- W4309455257 hasConceptScore W4309455257C115961682 @default.
- W4309455257 hasConceptScore W4309455257C119857082 @default.
- W4309455257 hasConceptScore W4309455257C142724271 @default.
- W4309455257 hasConceptScore W4309455257C150899416 @default.
- W4309455257 hasConceptScore W4309455257C154945302 @default.
- W4309455257 hasConceptScore W4309455257C2777014526 @default.
- W4309455257 hasConceptScore W4309455257C2779134260 @default.
- W4309455257 hasConceptScore W4309455257C41008148 @default.
- W4309455257 hasConceptScore W4309455257C43270747 @default.
- W4309455257 hasConceptScore W4309455257C71924100 @default.
- W4309455257 hasConceptScore W4309455257C75294576 @default.
- W4309455257 hasIssue "11" @default.
- W4309455257 hasLocation W43094552571 @default.
- W4309455257 hasLocation W43094552572 @default.
- W4309455257 hasLocation W43094552573 @default.
- W4309455257 hasLocation W43094552574 @default.
- W4309455257 hasOpenAccess W4309455257 @default.
- W4309455257 hasPrimaryLocation W43094552571 @default.
- W4309455257 hasRelatedWork W2807839383 @default.
- W4309455257 hasRelatedWork W2960456850 @default.
- W4309455257 hasRelatedWork W2996856019 @default.
- W4309455257 hasRelatedWork W3018421652 @default.
- W4309455257 hasRelatedWork W4220996320 @default.
- W4309455257 hasRelatedWork W4288040045 @default.
- W4309455257 hasRelatedWork W4312200629 @default.
- W4309455257 hasRelatedWork W4317565044 @default.
- W4309455257 hasRelatedWork W4382286161 @default.
- W4309455257 hasRelatedWork W4386213806 @default.
- W4309455257 hasVolume "12" @default.
- W4309455257 isParatext "false" @default.
- W4309455257 isRetracted "false" @default.