Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309457652> ?p ?o ?g. }
- W4309457652 abstract "Determining how noncoding genetic variants contribute to neurodegenerative dementias is fundamental to understanding disease pathogenesis, improving patient prognostication, and developing new clinical treatments. Next generation sequencing technologies have produced vast amounts of genomic data on cell type-specific transcription factor binding, gene expression, and three-dimensional chromatin interactions, with the promise of providing key insights into the biological mechanisms underlying disease. However, this data is highly complex, making it challenging for researchers to interpret, assimilate, and dissect. To this end, deep learning has emerged as a powerful tool for genome analysis that can capture the intricate patterns and dependencies within these large datasets. In this review, we organize and discuss the many unique model architectures, development philosophies, and interpretation methods that have emerged in the last few years with a focus on using deep learning to predict the impact of genetic variants on disease pathogenesis. We highlight both broadly-applicable genomic deep learning methods that can be fine-tuned to disease-specific contexts as well as existing neurodegenerative disease research, with an emphasis on Alzheimer’s-specific literature. We conclude with an overview of the future of the field at the intersection of neurodegeneration, genomics, and deep learning." @default.
- W4309457652 created "2022-11-28" @default.
- W4309457652 creator A5035503020 @default.
- W4309457652 creator A5079882066 @default.
- W4309457652 date "2022-11-18" @default.
- W4309457652 modified "2023-10-14" @default.
- W4309457652 title "Deep learning approaches for noncoding variant prioritization in neurodegenerative diseases" @default.
- W4309457652 cites W1019830208 @default.
- W4309457652 cites W1498436455 @default.
- W4309457652 cites W1505191356 @default.
- W4309457652 cites W1565385417 @default.
- W4309457652 cites W1974565082 @default.
- W4309457652 cites W1988581590 @default.
- W4309457652 cites W1991543373 @default.
- W4309457652 cites W2007988561 @default.
- W4309457652 cites W2010192073 @default.
- W4309457652 cites W2011582941 @default.
- W4309457652 cites W2062848325 @default.
- W4309457652 cites W2064675550 @default.
- W4309457652 cites W2076063813 @default.
- W4309457652 cites W2076154138 @default.
- W4309457652 cites W2078059415 @default.
- W4309457652 cites W2088338354 @default.
- W4309457652 cites W2112796928 @default.
- W4309457652 cites W2165840723 @default.
- W4309457652 cites W2198606573 @default.
- W4309457652 cites W2212528563 @default.
- W4309457652 cites W2336509392 @default.
- W4309457652 cites W2341128841 @default.
- W4309457652 cites W2345512687 @default.
- W4309457652 cites W2395579298 @default.
- W4309457652 cites W2502949459 @default.
- W4309457652 cites W2551092411 @default.
- W4309457652 cites W2609272369 @default.
- W4309457652 cites W2619383789 @default.
- W4309457652 cites W2792304822 @default.
- W4309457652 cites W2799593901 @default.
- W4309457652 cites W2801470635 @default.
- W4309457652 cites W2810986024 @default.
- W4309457652 cites W2883945062 @default.
- W4309457652 cites W2883972171 @default.
- W4309457652 cites W2885948040 @default.
- W4309457652 cites W2901218091 @default.
- W4309457652 cites W2909194804 @default.
- W4309457652 cites W2918443914 @default.
- W4309457652 cites W2919115771 @default.
- W4309457652 cites W2922020904 @default.
- W4309457652 cites W2935703330 @default.
- W4309457652 cites W2937686488 @default.
- W4309457652 cites W2944278168 @default.
- W4309457652 cites W2946936654 @default.
- W4309457652 cites W2947187332 @default.
- W4309457652 cites W2950980382 @default.
- W4309457652 cites W2951218167 @default.
- W4309457652 cites W2951410692 @default.
- W4309457652 cites W2952239877 @default.
- W4309457652 cites W2953306855 @default.
- W4309457652 cites W2960370523 @default.
- W4309457652 cites W2968912020 @default.
- W4309457652 cites W2969948459 @default.
- W4309457652 cites W2972895026 @default.
- W4309457652 cites W2976163060 @default.
- W4309457652 cites W2976163884 @default.
- W4309457652 cites W2988958689 @default.
- W4309457652 cites W3001510487 @default.
- W4309457652 cites W3007931728 @default.
- W4309457652 cites W3008517864 @default.
- W4309457652 cites W3013411594 @default.
- W4309457652 cites W3026475692 @default.
- W4309457652 cites W3036035798 @default.
- W4309457652 cites W3042669608 @default.
- W4309457652 cites W3043374725 @default.
- W4309457652 cites W3045545608 @default.
- W4309457652 cites W3045910546 @default.
- W4309457652 cites W3081278968 @default.
- W4309457652 cites W3091921516 @default.
- W4309457652 cites W3092624702 @default.
- W4309457652 cites W3093674228 @default.
- W4309457652 cites W3111329547 @default.
- W4309457652 cites W3115346491 @default.
- W4309457652 cites W3127238141 @default.
- W4309457652 cites W3127597934 @default.
- W4309457652 cites W3128513378 @default.
- W4309457652 cites W3130727496 @default.
- W4309457652 cites W3130819465 @default.
- W4309457652 cites W3134303686 @default.
- W4309457652 cites W3139240024 @default.
- W4309457652 cites W3142337822 @default.
- W4309457652 cites W3146159774 @default.
- W4309457652 cites W3155787614 @default.
- W4309457652 cites W3163257742 @default.
- W4309457652 cites W3172294552 @default.
- W4309457652 cites W3184294515 @default.
- W4309457652 cites W3194509722 @default.
- W4309457652 cites W3195330522 @default.
- W4309457652 cites W3197290161 @default.
- W4309457652 cites W3202073748 @default.
- W4309457652 cites W3203588026 @default.
- W4309457652 cites W3217314753 @default.
- W4309457652 cites W4206055706 @default.