Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309468392> ?p ?o ?g. }
- W4309468392 endingPage "145" @default.
- W4309468392 startingPage "116" @default.
- W4309468392 abstract "Abstract Many modern computational approaches to classical problems in quantitative finance are formulated as empirical loss minimization (ERM), allowing direct applications of classical results from statistical machine learning. These methods, designed to directly construct the optimal feedback representation of hedging or investment decisions, are analyzed in this framework demonstrating their effectiveness as well as their susceptibility to generalization error. Use of classical techniques shows that over‐training renders trained investment decisions to become anticipative, and proves overlearning for large hypothesis spaces. On the other hand, nonasymptotic estimates based on Rademacher complexity show the convergence for sufficiently large training sets. These results emphasize the importance of synthetic data generation and the appropriate calibration of complex models to market data. A numerically studied stylized example illustrates these possibilities, including the importance of problem dimension in the degree of overlearning, and the effectiveness of this approach." @default.
- W4309468392 created "2022-11-28" @default.
- W4309468392 creator A5035754215 @default.
- W4309468392 creator A5050033426 @default.
- W4309468392 date "2022-11-17" @default.
- W4309468392 modified "2023-10-12" @default.
- W4309468392 title "Deep empirical risk minimization in finance: Looking into the future" @default.
- W4309468392 cites W1677182931 @default.
- W4309468392 cites W1988115241 @default.
- W4309468392 cites W2076118331 @default.
- W4309468392 cites W2103496339 @default.
- W4309468392 cites W2487770199 @default.
- W4309468392 cites W2510082327 @default.
- W4309468392 cites W2566079294 @default.
- W4309468392 cites W2749028154 @default.
- W4309468392 cites W2769936938 @default.
- W4309468392 cites W2803629276 @default.
- W4309468392 cites W2899507754 @default.
- W4309468392 cites W2903857590 @default.
- W4309468392 cites W2963038205 @default.
- W4309468392 cites W2963134136 @default.
- W4309468392 cites W2963450292 @default.
- W4309468392 cites W2963518130 @default.
- W4309468392 cites W2963786320 @default.
- W4309468392 cites W2964016242 @default.
- W4309468392 cites W2990035425 @default.
- W4309468392 cites W3016378723 @default.
- W4309468392 cites W3023610427 @default.
- W4309468392 cites W3126164011 @default.
- W4309468392 cites W3135775113 @default.
- W4309468392 cites W3155121003 @default.
- W4309468392 cites W3166160610 @default.
- W4309468392 cites W3204818612 @default.
- W4309468392 cites W4214672155 @default.
- W4309468392 cites W4236362309 @default.
- W4309468392 cites W4247451115 @default.
- W4309468392 cites W4251115686 @default.
- W4309468392 cites W4312163175 @default.
- W4309468392 doi "https://doi.org/10.1111/mafi.12365" @default.
- W4309468392 hasPublicationYear "2022" @default.
- W4309468392 type Work @default.
- W4309468392 citedByCount "3" @default.
- W4309468392 countsByYear W43094683922022 @default.
- W4309468392 countsByYear W43094683922023 @default.
- W4309468392 crossrefType "journal-article" @default.
- W4309468392 hasAuthorship W4309468392A5035754215 @default.
- W4309468392 hasAuthorship W4309468392A5050033426 @default.
- W4309468392 hasBestOaLocation W43094683922 @default.
- W4309468392 hasConcept C10138342 @default.
- W4309468392 hasConcept C107321475 @default.
- W4309468392 hasConcept C119857082 @default.
- W4309468392 hasConcept C126255220 @default.
- W4309468392 hasConcept C134306372 @default.
- W4309468392 hasConcept C139719470 @default.
- W4309468392 hasConcept C147764199 @default.
- W4309468392 hasConcept C149782125 @default.
- W4309468392 hasConcept C154507838 @default.
- W4309468392 hasConcept C162324750 @default.
- W4309468392 hasConcept C177148314 @default.
- W4309468392 hasConcept C17744445 @default.
- W4309468392 hasConcept C199360897 @default.
- W4309468392 hasConcept C199539241 @default.
- W4309468392 hasConcept C202444582 @default.
- W4309468392 hasConcept C27548731 @default.
- W4309468392 hasConcept C2776359362 @default.
- W4309468392 hasConcept C2777303404 @default.
- W4309468392 hasConcept C2780801425 @default.
- W4309468392 hasConcept C33676613 @default.
- W4309468392 hasConcept C33923547 @default.
- W4309468392 hasConcept C38935604 @default.
- W4309468392 hasConcept C41008148 @default.
- W4309468392 hasConcept C50522688 @default.
- W4309468392 hasConcept C50644808 @default.
- W4309468392 hasConcept C93373587 @default.
- W4309468392 hasConcept C94625758 @default.
- W4309468392 hasConceptScore W4309468392C10138342 @default.
- W4309468392 hasConceptScore W4309468392C107321475 @default.
- W4309468392 hasConceptScore W4309468392C119857082 @default.
- W4309468392 hasConceptScore W4309468392C126255220 @default.
- W4309468392 hasConceptScore W4309468392C134306372 @default.
- W4309468392 hasConceptScore W4309468392C139719470 @default.
- W4309468392 hasConceptScore W4309468392C147764199 @default.
- W4309468392 hasConceptScore W4309468392C149782125 @default.
- W4309468392 hasConceptScore W4309468392C154507838 @default.
- W4309468392 hasConceptScore W4309468392C162324750 @default.
- W4309468392 hasConceptScore W4309468392C177148314 @default.
- W4309468392 hasConceptScore W4309468392C17744445 @default.
- W4309468392 hasConceptScore W4309468392C199360897 @default.
- W4309468392 hasConceptScore W4309468392C199539241 @default.
- W4309468392 hasConceptScore W4309468392C202444582 @default.
- W4309468392 hasConceptScore W4309468392C27548731 @default.
- W4309468392 hasConceptScore W4309468392C2776359362 @default.
- W4309468392 hasConceptScore W4309468392C2777303404 @default.
- W4309468392 hasConceptScore W4309468392C2780801425 @default.
- W4309468392 hasConceptScore W4309468392C33676613 @default.
- W4309468392 hasConceptScore W4309468392C33923547 @default.
- W4309468392 hasConceptScore W4309468392C38935604 @default.
- W4309468392 hasConceptScore W4309468392C41008148 @default.