Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309471305> ?p ?o ?g. }
- W4309471305 endingPage "e31214" @default.
- W4309471305 startingPage "e31214" @default.
- W4309471305 abstract "In order to achieve better performance, artificial intelligence is used in breast cancer diagnosis. In this study, we evaluated the efficacy of different fine-tuning strategies of deep transfer learning (DTL) based on the DenseNet201 model to differentiate malignant from benign lesions on breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). We collected 4260 images of benign lesions and 4140 images of malignant lesions of the breast pertaining to pathologically confirmed cases. The benign and malignant groups was randomly divided into a training set and a testing set at a ratio of 9:1. A DTL model based on the DenseNet201 model was established, and the effectiveness of 4 fine-tuning strategies (S0: strategy 0, S1: strategy; S2: strategy; and S3: strategy) was compared. Additionally, DCE-MRI images of 48 breast lesions were selected to verify the robustness of the model. Ten images were obtained for each lesion. The classification was considered correct if more than 5 images were correctly classified. The metrics for model performance evaluation included accuracy (Ac) in the training and testing sets, precision (Pr), recall rate (Rc), f1 score (f1), and area under the receiver operating characteristic curve (AUROC) in the validation set. The Ac of the 4 fine-tuning strategies reached 100.00% in the training set. The S2 strategy exhibited good convergence in the testing set. The Ac of S2 was 98.01% in the testing set, which was higher than those of S0 (93.10%), S1 (90.45%), and S3 (93.90%). The average classification Pr, Rc, f1, and AUROC of S2 in the validation set were (89.00%, 80.00%, 0.81, and 0.79, respectively) higher than those of S0 (76.00%, 67.00%, 0.69, and 0.65, respectively), S1 (60.00%, 60.00%, 0.60, 0.66, and respectively), and S3 (77.00%, 73.00%, 0.74, 0.72, respectively). The degree of coincidence between S2 and the histopathological method for differentiating between benign and malignant breast lesions was high (κ = 0.749). The S2 strategy can improve the robustness of the DenseNet201 model in relatively small breast DCE-MRI datasets, and this is a reliable method to increase the Ac of discriminating benign from malignant breast lesions on DCE-MRI." @default.
- W4309471305 created "2022-11-28" @default.
- W4309471305 creator A5015109937 @default.
- W4309471305 creator A5078750296 @default.
- W4309471305 creator A5080733133 @default.
- W4309471305 creator A5081497818 @default.
- W4309471305 date "2022-11-11" @default.
- W4309471305 modified "2023-09-30" @default.
- W4309471305 title "Differentiation of breast lesions on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using deep transfer learning based on DenseNet201" @default.
- W4309471305 cites W2796256498 @default.
- W4309471305 cites W2916845318 @default.
- W4309471305 cites W2947005892 @default.
- W4309471305 cites W2954836639 @default.
- W4309471305 cites W2963493912 @default.
- W4309471305 cites W2971013993 @default.
- W4309471305 cites W3005546201 @default.
- W4309471305 cites W3009292867 @default.
- W4309471305 cites W3011337925 @default.
- W4309471305 cites W3015836412 @default.
- W4309471305 cites W3029973562 @default.
- W4309471305 cites W3040660552 @default.
- W4309471305 cites W3082831672 @default.
- W4309471305 cites W3120006163 @default.
- W4309471305 cites W3129798215 @default.
- W4309471305 cites W3138973186 @default.
- W4309471305 cites W3162887741 @default.
- W4309471305 cites W3169822846 @default.
- W4309471305 cites W3173728300 @default.
- W4309471305 cites W3182594001 @default.
- W4309471305 cites W4206443915 @default.
- W4309471305 doi "https://doi.org/10.1097/md.0000000000031214" @default.
- W4309471305 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36397422" @default.
- W4309471305 hasPublicationYear "2022" @default.
- W4309471305 type Work @default.
- W4309471305 citedByCount "2" @default.
- W4309471305 countsByYear W43094713052023 @default.
- W4309471305 crossrefType "journal-article" @default.
- W4309471305 hasAuthorship W4309471305A5015109937 @default.
- W4309471305 hasAuthorship W4309471305A5078750296 @default.
- W4309471305 hasAuthorship W4309471305A5080733133 @default.
- W4309471305 hasAuthorship W4309471305A5081497818 @default.
- W4309471305 hasBestOaLocation W43094713051 @default.
- W4309471305 hasConcept C104317684 @default.
- W4309471305 hasConcept C121608353 @default.
- W4309471305 hasConcept C126322002 @default.
- W4309471305 hasConcept C126838900 @default.
- W4309471305 hasConcept C143409427 @default.
- W4309471305 hasConcept C153180895 @default.
- W4309471305 hasConcept C154945302 @default.
- W4309471305 hasConcept C185592680 @default.
- W4309471305 hasConcept C2776502983 @default.
- W4309471305 hasConcept C2777111374 @default.
- W4309471305 hasConcept C2777432617 @default.
- W4309471305 hasConcept C2780472235 @default.
- W4309471305 hasConcept C2994142346 @default.
- W4309471305 hasConcept C41008148 @default.
- W4309471305 hasConcept C41727105 @default.
- W4309471305 hasConcept C530470458 @default.
- W4309471305 hasConcept C55493867 @default.
- W4309471305 hasConcept C58471807 @default.
- W4309471305 hasConcept C63479239 @default.
- W4309471305 hasConcept C71924100 @default.
- W4309471305 hasConceptScore W4309471305C104317684 @default.
- W4309471305 hasConceptScore W4309471305C121608353 @default.
- W4309471305 hasConceptScore W4309471305C126322002 @default.
- W4309471305 hasConceptScore W4309471305C126838900 @default.
- W4309471305 hasConceptScore W4309471305C143409427 @default.
- W4309471305 hasConceptScore W4309471305C153180895 @default.
- W4309471305 hasConceptScore W4309471305C154945302 @default.
- W4309471305 hasConceptScore W4309471305C185592680 @default.
- W4309471305 hasConceptScore W4309471305C2776502983 @default.
- W4309471305 hasConceptScore W4309471305C2777111374 @default.
- W4309471305 hasConceptScore W4309471305C2777432617 @default.
- W4309471305 hasConceptScore W4309471305C2780472235 @default.
- W4309471305 hasConceptScore W4309471305C2994142346 @default.
- W4309471305 hasConceptScore W4309471305C41008148 @default.
- W4309471305 hasConceptScore W4309471305C41727105 @default.
- W4309471305 hasConceptScore W4309471305C530470458 @default.
- W4309471305 hasConceptScore W4309471305C55493867 @default.
- W4309471305 hasConceptScore W4309471305C58471807 @default.
- W4309471305 hasConceptScore W4309471305C63479239 @default.
- W4309471305 hasConceptScore W4309471305C71924100 @default.
- W4309471305 hasIssue "45" @default.
- W4309471305 hasLocation W43094713051 @default.
- W4309471305 hasLocation W43094713052 @default.
- W4309471305 hasLocation W43094713053 @default.
- W4309471305 hasLocation W43094713054 @default.
- W4309471305 hasOpenAccess W4309471305 @default.
- W4309471305 hasPrimaryLocation W43094713051 @default.
- W4309471305 hasRelatedWork W2030830335 @default.
- W4309471305 hasRelatedWork W2107649834 @default.
- W4309471305 hasRelatedWork W2124850242 @default.
- W4309471305 hasRelatedWork W2288638702 @default.
- W4309471305 hasRelatedWork W2508382190 @default.
- W4309471305 hasRelatedWork W2547010546 @default.
- W4309471305 hasRelatedWork W2785338963 @default.
- W4309471305 hasRelatedWork W3196777194 @default.
- W4309471305 hasRelatedWork W4200132108 @default.