Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309475650> ?p ?o ?g. }
- W4309475650 endingPage "100882" @default.
- W4309475650 startingPage "100882" @default.
- W4309475650 abstract "Forest landscape restoration (FLR) commitments have been established in the past years to restore over 200 million hectares, as part of the global Bonn Challenge goal, mostly through the implementation of several different restorative practices in degraded lands, ranging from commercial tree monocultures to restoration plantings. The potential of such contrasting restorative practices to support biodiversity conservation and ecosystem services provision vary over space and time, making the monitoring of FLR programs an emerging challenge. Remote sensing techniques, together with innovative technologies for data acquisition, treatment, and analysis have proven to be strategic for planning and monitoring FLR, yet there are still important unresolved questions. Here, we evaluated the potential of multispectral orbital images of the high spatial (5 m) and spectral (12 bands) resolution VENμS microsatellite, joint project of the Israeli Space Agency and CNES, to classify the spectral behavior and diversity of six tree cover classes (savanna woodlands, old- and second-growth semi-deciduous forests, young restoration plantings, and eucalyptus and pine tree monocultures) commonly found in FLR programs in tropical regions. We assessed how these tree cover classes located in a study landscape in southeastern Brazil differ according to their spectral response (winter and summer bands, and vegetation indices), canopy variability (textural features), seasonal behavior (delta layers - difference between summer and winter vegetation indexes), and spectral diversity, and used these attributes as variables to the model. We used the Random Forest algorithm to generate the models and evaluate how the tree cover classes differ in the classification and how the variables supported the model. We achieved high values of global accuracy (91.9%) and “F1 score” (above 0.8) for all tree cover classes, in which second-growth forest presented the lowest accuracy. The textural layers, delta layers, and the spectral diversity layers were the most important attributes to discriminate among tree cover classes. We demonstrate here the potential of using VENμS or similar sensor images together with different image processing and machine learning algorithms to monitor FLR programs, allowing further remote sensing approaches and in-deep field assessments to advance evaluation of FLR benefits for nature and people. We demonstrated how the fusion of all these types of data and innovative approaches to data processing, can result in novel ways to assess restoration performance and open new avenues to upscale monitoring, bridging the gap between FLR expectations and achieved goals." @default.
- W4309475650 created "2022-11-28" @default.
- W4309475650 creator A5000657903 @default.
- W4309475650 creator A5013147003 @default.
- W4309475650 creator A5018593225 @default.
- W4309475650 creator A5026463941 @default.
- W4309475650 creator A5032994985 @default.
- W4309475650 creator A5041978640 @default.
- W4309475650 creator A5049524802 @default.
- W4309475650 creator A5051927420 @default.
- W4309475650 creator A5052052466 @default.
- W4309475650 creator A5071290797 @default.
- W4309475650 creator A5074160222 @default.
- W4309475650 creator A5074393061 @default.
- W4309475650 creator A5083766851 @default.
- W4309475650 date "2023-01-01" @default.
- W4309475650 modified "2023-10-17" @default.
- W4309475650 title "Forest landscape restoration: Spectral behavior and diversity of tropical tree cover classes" @default.
- W4309475650 cites W1618383215 @default.
- W4309475650 cites W1983848131 @default.
- W4309475650 cites W1990653740 @default.
- W4309475650 cites W2001618165 @default.
- W4309475650 cites W2020898624 @default.
- W4309475650 cites W2057868662 @default.
- W4309475650 cites W2080352380 @default.
- W4309475650 cites W2085183305 @default.
- W4309475650 cites W2088551744 @default.
- W4309475650 cites W2094754899 @default.
- W4309475650 cites W2129826572 @default.
- W4309475650 cites W2133237420 @default.
- W4309475650 cites W2150105794 @default.
- W4309475650 cites W2155632266 @default.
- W4309475650 cites W2162347291 @default.
- W4309475650 cites W2171467188 @default.
- W4309475650 cites W2261059368 @default.
- W4309475650 cites W2399700809 @default.
- W4309475650 cites W2538282875 @default.
- W4309475650 cites W2587019393 @default.
- W4309475650 cites W2606100861 @default.
- W4309475650 cites W2768238714 @default.
- W4309475650 cites W2793277402 @default.
- W4309475650 cites W2905311269 @default.
- W4309475650 cites W2911298349 @default.
- W4309475650 cites W2914261052 @default.
- W4309475650 cites W2932737671 @default.
- W4309475650 cites W2943610531 @default.
- W4309475650 cites W2978466225 @default.
- W4309475650 cites W3034897356 @default.
- W4309475650 cites W3046683821 @default.
- W4309475650 cites W3186917005 @default.
- W4309475650 cites W3216079496 @default.
- W4309475650 cites W4220709153 @default.
- W4309475650 cites W4220952637 @default.
- W4309475650 doi "https://doi.org/10.1016/j.rsase.2022.100882" @default.
- W4309475650 hasPublicationYear "2023" @default.
- W4309475650 type Work @default.
- W4309475650 citedByCount "0" @default.
- W4309475650 crossrefType "journal-article" @default.
- W4309475650 hasAuthorship W4309475650A5000657903 @default.
- W4309475650 hasAuthorship W4309475650A5013147003 @default.
- W4309475650 hasAuthorship W4309475650A5018593225 @default.
- W4309475650 hasAuthorship W4309475650A5026463941 @default.
- W4309475650 hasAuthorship W4309475650A5032994985 @default.
- W4309475650 hasAuthorship W4309475650A5041978640 @default.
- W4309475650 hasAuthorship W4309475650A5049524802 @default.
- W4309475650 hasAuthorship W4309475650A5051927420 @default.
- W4309475650 hasAuthorship W4309475650A5052052466 @default.
- W4309475650 hasAuthorship W4309475650A5071290797 @default.
- W4309475650 hasAuthorship W4309475650A5074160222 @default.
- W4309475650 hasAuthorship W4309475650A5074393061 @default.
- W4309475650 hasAuthorship W4309475650A5083766851 @default.
- W4309475650 hasConcept C101000010 @default.
- W4309475650 hasConcept C110872660 @default.
- W4309475650 hasConcept C130217890 @default.
- W4309475650 hasConcept C142724271 @default.
- W4309475650 hasConcept C157005057 @default.
- W4309475650 hasConcept C166957645 @default.
- W4309475650 hasConcept C18903297 @default.
- W4309475650 hasConcept C205649164 @default.
- W4309475650 hasConcept C24037442 @default.
- W4309475650 hasConcept C2776133958 @default.
- W4309475650 hasConcept C33283694 @default.
- W4309475650 hasConcept C39432304 @default.
- W4309475650 hasConcept C54286561 @default.
- W4309475650 hasConcept C62649853 @default.
- W4309475650 hasConcept C71924100 @default.
- W4309475650 hasConcept C73935091 @default.
- W4309475650 hasConcept C86803240 @default.
- W4309475650 hasConcept C89920630 @default.
- W4309475650 hasConceptScore W4309475650C101000010 @default.
- W4309475650 hasConceptScore W4309475650C110872660 @default.
- W4309475650 hasConceptScore W4309475650C130217890 @default.
- W4309475650 hasConceptScore W4309475650C142724271 @default.
- W4309475650 hasConceptScore W4309475650C157005057 @default.
- W4309475650 hasConceptScore W4309475650C166957645 @default.
- W4309475650 hasConceptScore W4309475650C18903297 @default.
- W4309475650 hasConceptScore W4309475650C205649164 @default.
- W4309475650 hasConceptScore W4309475650C24037442 @default.