Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309481903> ?p ?o ?g. }
- W4309481903 endingPage "105625" @default.
- W4309481903 startingPage "105625" @default.
- W4309481903 abstract "Breathing is dynamically modulated by metabolic needs as well as by emotional states. Even though rodents are invaluable models for investigating the neural control of respiration, current literature lacks systematic characterization of breathing dynamics across a broad spectrum of rodent behaviors. Here we uncover a wide diversity in breathing patterns across spontaneous, attractive odor-, stress-, and fear-induced behaviors in mice. Direct recordings of intranasal pressure afford more detailed respiratory information than more traditional whole-body plethysmography. K-means clustering groups 11 well-defined behavioral states into four clusters with distinct key respiratory features. Furthermore, we implement RUSBoost (random undersampling boost) classification, a supervised machine learning model, and find that breathing patterns can separate these behaviors with an accuracy of 80%. Taken together, our findings highlight the tight relationship between breathing and behavior and the potential use of breathing patterns to aid in distinguishing similar behaviors and inform about their internal states." @default.
- W4309481903 created "2022-11-28" @default.
- W4309481903 creator A5004960069 @default.
- W4309481903 creator A5021261425 @default.
- W4309481903 creator A5035088386 @default.
- W4309481903 creator A5040019732 @default.
- W4309481903 creator A5042173280 @default.
- W4309481903 creator A5051136508 @default.
- W4309481903 creator A5055075700 @default.
- W4309481903 creator A5068488561 @default.
- W4309481903 creator A5068639967 @default.
- W4309481903 creator A5080568858 @default.
- W4309481903 date "2022-12-01" @default.
- W4309481903 modified "2023-10-13" @default.
- W4309481903 title "Machine learning-based clustering and classification of mouse behaviors via respiratory patterns" @default.
- W4309481903 cites W1517971488 @default.
- W4309481903 cites W169457739 @default.
- W4309481903 cites W172191733 @default.
- W4309481903 cites W1940376800 @default.
- W4309481903 cites W1977629446 @default.
- W4309481903 cites W1980691164 @default.
- W4309481903 cites W1984590955 @default.
- W4309481903 cites W2010918615 @default.
- W4309481903 cites W2016072762 @default.
- W4309481903 cites W2016539710 @default.
- W4309481903 cites W2022911099 @default.
- W4309481903 cites W2041586962 @default.
- W4309481903 cites W2046599344 @default.
- W4309481903 cites W2055370862 @default.
- W4309481903 cites W2067401415 @default.
- W4309481903 cites W2068121981 @default.
- W4309481903 cites W2088993762 @default.
- W4309481903 cites W2097359674 @default.
- W4309481903 cites W2100800937 @default.
- W4309481903 cites W2126187217 @default.
- W4309481903 cites W2135557712 @default.
- W4309481903 cites W2164952006 @default.
- W4309481903 cites W2167371136 @default.
- W4309481903 cites W2168183996 @default.
- W4309481903 cites W2180456503 @default.
- W4309481903 cites W2214759970 @default.
- W4309481903 cites W2219858099 @default.
- W4309481903 cites W2258916836 @default.
- W4309481903 cites W2407109582 @default.
- W4309481903 cites W2415217866 @default.
- W4309481903 cites W2473062782 @default.
- W4309481903 cites W2580493263 @default.
- W4309481903 cites W2588231592 @default.
- W4309481903 cites W2592528122 @default.
- W4309481903 cites W2602656046 @default.
- W4309481903 cites W2708836175 @default.
- W4309481903 cites W2787558358 @default.
- W4309481903 cites W2800238864 @default.
- W4309481903 cites W2803720165 @default.
- W4309481903 cites W2803721395 @default.
- W4309481903 cites W2834248954 @default.
- W4309481903 cites W2887114371 @default.
- W4309481903 cites W2903653308 @default.
- W4309481903 cites W2904640575 @default.
- W4309481903 cites W2950748554 @default.
- W4309481903 cites W2966567124 @default.
- W4309481903 cites W3003972603 @default.
- W4309481903 cites W3014953422 @default.
- W4309481903 cites W3049522233 @default.
- W4309481903 cites W3110418130 @default.
- W4309481903 cites W3121881730 @default.
- W4309481903 cites W3145906754 @default.
- W4309481903 cites W3162448660 @default.
- W4309481903 cites W4200149041 @default.
- W4309481903 cites W4207064626 @default.
- W4309481903 cites W4211230056 @default.
- W4309481903 cites W4212876276 @default.
- W4309481903 cites W4214508926 @default.
- W4309481903 cites W4220914976 @default.
- W4309481903 cites W4299293190 @default.
- W4309481903 doi "https://doi.org/10.1016/j.isci.2022.105625" @default.
- W4309481903 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36479148" @default.
- W4309481903 hasPublicationYear "2022" @default.
- W4309481903 type Work @default.
- W4309481903 citedByCount "0" @default.
- W4309481903 crossrefType "journal-article" @default.
- W4309481903 hasAuthorship W4309481903A5004960069 @default.
- W4309481903 hasAuthorship W4309481903A5021261425 @default.
- W4309481903 hasAuthorship W4309481903A5035088386 @default.
- W4309481903 hasAuthorship W4309481903A5040019732 @default.
- W4309481903 hasAuthorship W4309481903A5042173280 @default.
- W4309481903 hasAuthorship W4309481903A5051136508 @default.
- W4309481903 hasAuthorship W4309481903A5055075700 @default.
- W4309481903 hasAuthorship W4309481903A5068488561 @default.
- W4309481903 hasAuthorship W4309481903A5068639967 @default.
- W4309481903 hasAuthorship W4309481903A5080568858 @default.
- W4309481903 hasBestOaLocation W43094819031 @default.
- W4309481903 hasConcept C119857082 @default.
- W4309481903 hasConcept C136536468 @default.
- W4309481903 hasConcept C153180895 @default.
- W4309481903 hasConcept C154945302 @default.
- W4309481903 hasConcept C15744967 @default.
- W4309481903 hasConcept C169760540 @default.