Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309483276> ?p ?o ?g. }
- W4309483276 endingPage "110602" @default.
- W4309483276 startingPage "110602" @default.
- W4309483276 abstract "Extracting water equivalent diameter (DW), as a good descriptor of patient size, from the CT localizer before the spiral scan not only minimizes truncation errors due to the limited scan field-of-view but also enables prior size-specific dose estimation as well as scan protocol optimization. This study proposed a unified methodology to measure patient size, shape, and attenuation parameters from a 2D anterior-posterior localizer image using deep learning algorithms without the need for labor-intensive vendor-specific calibration procedures.3D CT chest images and 2D localizers were collected for 4005 patients. A modified U-NET architecture was trained to predict the 3D CT images from their corresponding localizer scans. The algorithm was tested on 648 and 138 external cases with fixed and variable table height positions. To evaluate the performance of the prediction model, structural similarity index measure (SSIM), body area, body contour, Dice index, and water equivalent diameter (DW) were calculated and compared between the predicted 3D CT images and the ground truth (GT) images in a slicewise manner.The average age of the patients included in this study (1827 male and 1554 female) was 53.8 ± 17.9 (18-120) years. The DW, tube current ,and CTDIvol measured on original axial images in the external 138 cases group were significantly larger than those of the external 648 cases (P < 0.05). The SSIM and Dice index calculated between the prediction and GT for body contour were 0.998 ± 0.001 and 0.950 ± 0.016, respectively. The average percentage error in the calculation of DW was 2.7 ± 3.5 %. The error in the DW calculation was more considerable in larger patients (p-value < 0.05).We developed a model to predict the patient size, shape, and attenuation factors slice-by-slice prior to spiral scanning. The model exhibited remarkable robustness to table height variations. The estimated parameters are helpful for patient dose reduction and protocol optimization." @default.
- W4309483276 created "2022-11-28" @default.
- W4309483276 creator A5003433949 @default.
- W4309483276 creator A5007891293 @default.
- W4309483276 creator A5026180274 @default.
- W4309483276 creator A5034625862 @default.
- W4309483276 creator A5036836472 @default.
- W4309483276 creator A5039181443 @default.
- W4309483276 creator A5041147908 @default.
- W4309483276 creator A5062382836 @default.
- W4309483276 creator A5064324055 @default.
- W4309483276 date "2022-12-01" @default.
- W4309483276 modified "2023-10-18" @default.
- W4309483276 title "Deep Learning-based calculation of patient size and attenuation surrogates from localizer Image: Toward personalized chest CT protocol optimization" @default.
- W4309483276 cites W2034984742 @default.
- W4309483276 cites W2093317157 @default.
- W4309483276 cites W2106183691 @default.
- W4309483276 cites W2108836250 @default.
- W4309483276 cites W2166133072 @default.
- W4309483276 cites W2419362857 @default.
- W4309483276 cites W2494898570 @default.
- W4309483276 cites W2534595208 @default.
- W4309483276 cites W2555142874 @default.
- W4309483276 cites W2559286294 @default.
- W4309483276 cites W2765599824 @default.
- W4309483276 cites W2767603825 @default.
- W4309483276 cites W2799590143 @default.
- W4309483276 cites W2804654737 @default.
- W4309483276 cites W2853766925 @default.
- W4309483276 cites W2905333831 @default.
- W4309483276 cites W2941852756 @default.
- W4309483276 cites W2946395205 @default.
- W4309483276 cites W2952268221 @default.
- W4309483276 cites W2954679397 @default.
- W4309483276 cites W2991771456 @default.
- W4309483276 cites W2999311411 @default.
- W4309483276 cites W3003160052 @default.
- W4309483276 cites W3008446585 @default.
- W4309483276 cites W3013891807 @default.
- W4309483276 cites W3021841637 @default.
- W4309483276 cites W3033152235 @default.
- W4309483276 cites W3047075456 @default.
- W4309483276 cites W3049757379 @default.
- W4309483276 cites W3081965108 @default.
- W4309483276 cites W3092840523 @default.
- W4309483276 cites W3095440947 @default.
- W4309483276 cites W3100542382 @default.
- W4309483276 cites W3114408820 @default.
- W4309483276 cites W3120960278 @default.
- W4309483276 cites W3135955764 @default.
- W4309483276 cites W3156520986 @default.
- W4309483276 cites W3174441454 @default.
- W4309483276 cites W3186171197 @default.
- W4309483276 cites W3188390846 @default.
- W4309483276 cites W3212441610 @default.
- W4309483276 cites W4200250907 @default.
- W4309483276 cites W4200313985 @default.
- W4309483276 doi "https://doi.org/10.1016/j.ejrad.2022.110602" @default.
- W4309483276 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36410091" @default.
- W4309483276 hasPublicationYear "2022" @default.
- W4309483276 type Work @default.
- W4309483276 citedByCount "2" @default.
- W4309483276 countsByYear W43094832762023 @default.
- W4309483276 crossrefType "journal-article" @default.
- W4309483276 hasAuthorship W4309483276A5003433949 @default.
- W4309483276 hasAuthorship W4309483276A5007891293 @default.
- W4309483276 hasAuthorship W4309483276A5026180274 @default.
- W4309483276 hasAuthorship W4309483276A5034625862 @default.
- W4309483276 hasAuthorship W4309483276A5036836472 @default.
- W4309483276 hasAuthorship W4309483276A5039181443 @default.
- W4309483276 hasAuthorship W4309483276A5041147908 @default.
- W4309483276 hasAuthorship W4309483276A5062382836 @default.
- W4309483276 hasAuthorship W4309483276A5064324055 @default.
- W4309483276 hasBestOaLocation W43094832762 @default.
- W4309483276 hasConcept C103278499 @default.
- W4309483276 hasConcept C115961682 @default.
- W4309483276 hasConcept C120665830 @default.
- W4309483276 hasConcept C121332964 @default.
- W4309483276 hasConcept C146849305 @default.
- W4309483276 hasConcept C153180895 @default.
- W4309483276 hasConcept C154945302 @default.
- W4309483276 hasConcept C184652730 @default.
- W4309483276 hasConcept C2989005 @default.
- W4309483276 hasConcept C41008148 @default.
- W4309483276 hasConcept C55020928 @default.
- W4309483276 hasConcept C71924100 @default.
- W4309483276 hasConceptScore W4309483276C103278499 @default.
- W4309483276 hasConceptScore W4309483276C115961682 @default.
- W4309483276 hasConceptScore W4309483276C120665830 @default.
- W4309483276 hasConceptScore W4309483276C121332964 @default.
- W4309483276 hasConceptScore W4309483276C146849305 @default.
- W4309483276 hasConceptScore W4309483276C153180895 @default.
- W4309483276 hasConceptScore W4309483276C154945302 @default.
- W4309483276 hasConceptScore W4309483276C184652730 @default.
- W4309483276 hasConceptScore W4309483276C2989005 @default.
- W4309483276 hasConceptScore W4309483276C41008148 @default.
- W4309483276 hasConceptScore W4309483276C55020928 @default.
- W4309483276 hasConceptScore W4309483276C71924100 @default.