Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309483453> ?p ?o ?g. }
- W4309483453 endingPage "119285" @default.
- W4309483453 startingPage "119285" @default.
- W4309483453 abstract "Large-scale air combat is accompanied by complex relationships among the participants, e.g., siege, support. These relationships often present numerous, multi-relational, and high-order characteristics. However, previous studies have encountered significant difficulties in dissecting large-scale air confrontations with such complex relationships. In view of this, a novel Multi-Agent Deep Reinforcement Learning (MADRL) and expert knowledge hybrid algorithm named Transitive RelatIonShip graph reasOing for autoNomous aIr combat Collaboration (TRISONIC) is proposed, which solves the large-scale autonomous air combat problem with complex relationships. Specifically, TRISONIC creates a Graph Neural Networks (GNNs) and expert knowledge composite approach to jointly reason out the key relationships into an Abstract Relationship Graph (ARG). After this particular relationship simplification process, representative collaboration tactics emerged via subsequent intention communication and joint decision making mechanisms. Empirically, we demonstrate that the proposed method outperforms state-of-the-art algorithms with an at least 67.4% relative winning rate in a high-fidelity air combat simulation environment." @default.
- W4309483453 created "2022-11-28" @default.
- W4309483453 creator A5004540162 @default.
- W4309483453 creator A5012603863 @default.
- W4309483453 creator A5033771900 @default.
- W4309483453 creator A5053537544 @default.
- W4309483453 creator A5056861764 @default.
- W4309483453 creator A5058607951 @default.
- W4309483453 creator A5058650318 @default.
- W4309483453 creator A5068320905 @default.
- W4309483453 creator A5069038813 @default.
- W4309483453 creator A5088612760 @default.
- W4309483453 date "2023-04-01" @default.
- W4309483453 modified "2023-10-02" @default.
- W4309483453 title "Complex relationship graph abstraction for autonomous air combat collaboration: A learning and expert knowledge hybrid approach" @default.
- W4309483453 cites W1542941925 @default.
- W4309483453 cites W1966216502 @default.
- W4309483453 cites W2014229971 @default.
- W4309483453 cites W2016431084 @default.
- W4309483453 cites W2022849656 @default.
- W4309483453 cites W2116341502 @default.
- W4309483453 cites W2130939730 @default.
- W4309483453 cites W2145339207 @default.
- W4309483453 cites W2257979135 @default.
- W4309483453 cites W2598185436 @default.
- W4309483453 cites W2746521700 @default.
- W4309483453 cites W2766167653 @default.
- W4309483453 cites W2897500832 @default.
- W4309483453 cites W2960876848 @default.
- W4309483453 cites W2982316857 @default.
- W4309483453 cites W2991653934 @default.
- W4309483453 cites W2997536466 @default.
- W4309483453 cites W2998367975 @default.
- W4309483453 cites W3028318787 @default.
- W4309483453 cites W3033625896 @default.
- W4309483453 cites W3089592508 @default.
- W4309483453 cites W3092246241 @default.
- W4309483453 cites W3112673853 @default.
- W4309483453 cites W3136817238 @default.
- W4309483453 cites W3189082834 @default.
- W4309483453 cites W3190154035 @default.
- W4309483453 cites W3215039417 @default.
- W4309483453 cites W4200162182 @default.
- W4309483453 cites W4210257598 @default.
- W4309483453 cites W4225718713 @default.
- W4309483453 cites W4229042709 @default.
- W4309483453 doi "https://doi.org/10.1016/j.eswa.2022.119285" @default.
- W4309483453 hasPublicationYear "2023" @default.
- W4309483453 type Work @default.
- W4309483453 citedByCount "1" @default.
- W4309483453 countsByYear W43094834532023 @default.
- W4309483453 crossrefType "journal-article" @default.
- W4309483453 hasAuthorship W4309483453A5004540162 @default.
- W4309483453 hasAuthorship W4309483453A5012603863 @default.
- W4309483453 hasAuthorship W4309483453A5033771900 @default.
- W4309483453 hasAuthorship W4309483453A5053537544 @default.
- W4309483453 hasAuthorship W4309483453A5056861764 @default.
- W4309483453 hasAuthorship W4309483453A5058607951 @default.
- W4309483453 hasAuthorship W4309483453A5058650318 @default.
- W4309483453 hasAuthorship W4309483453A5068320905 @default.
- W4309483453 hasAuthorship W4309483453A5069038813 @default.
- W4309483453 hasAuthorship W4309483453A5088612760 @default.
- W4309483453 hasConcept C111472728 @default.
- W4309483453 hasConcept C114614502 @default.
- W4309483453 hasConcept C119857082 @default.
- W4309483453 hasConcept C124304363 @default.
- W4309483453 hasConcept C132525143 @default.
- W4309483453 hasConcept C138885662 @default.
- W4309483453 hasConcept C154945302 @default.
- W4309483453 hasConcept C191399111 @default.
- W4309483453 hasConcept C33923547 @default.
- W4309483453 hasConcept C41008148 @default.
- W4309483453 hasConcept C80444323 @default.
- W4309483453 hasConceptScore W4309483453C111472728 @default.
- W4309483453 hasConceptScore W4309483453C114614502 @default.
- W4309483453 hasConceptScore W4309483453C119857082 @default.
- W4309483453 hasConceptScore W4309483453C124304363 @default.
- W4309483453 hasConceptScore W4309483453C132525143 @default.
- W4309483453 hasConceptScore W4309483453C138885662 @default.
- W4309483453 hasConceptScore W4309483453C154945302 @default.
- W4309483453 hasConceptScore W4309483453C191399111 @default.
- W4309483453 hasConceptScore W4309483453C33923547 @default.
- W4309483453 hasConceptScore W4309483453C41008148 @default.
- W4309483453 hasConceptScore W4309483453C80444323 @default.
- W4309483453 hasLocation W43094834531 @default.
- W4309483453 hasOpenAccess W4309483453 @default.
- W4309483453 hasPrimaryLocation W43094834531 @default.
- W4309483453 hasRelatedWork W2961085424 @default.
- W4309483453 hasRelatedWork W3046775127 @default.
- W4309483453 hasRelatedWork W3170094116 @default.
- W4309483453 hasRelatedWork W3216885170 @default.
- W4309483453 hasRelatedWork W4205958290 @default.
- W4309483453 hasRelatedWork W4285260836 @default.
- W4309483453 hasRelatedWork W4286629047 @default.
- W4309483453 hasRelatedWork W4306321456 @default.
- W4309483453 hasRelatedWork W4306674287 @default.
- W4309483453 hasRelatedWork W4224009465 @default.
- W4309483453 hasVolume "215" @default.