Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309485612> ?p ?o ?g. }
- W4309485612 endingPage "22523" @default.
- W4309485612 startingPage "22497" @default.
- W4309485612 abstract "Due the quick spread of coronavirus disease 2019 (COVID-19), identification of that disease, prediction of mortality rate and recovery rate are considered as one of the critical challenges in the whole world. The occurrence of COVID-19 dissemination beyond the world is analyzed in this research and an artificial-intelligence (AI) based deep learning algorithm is suggested to detect positive cases of COVID19 patients, mortality rate and recovery rate using real-world datasets. Initially, the unwanted data like prepositions, links, hashtags etc., are removed using some pre-processing techniques. After that, term frequency inverse-term frequency (TF-IDF) andBag of Words (BoW) techniques are utilized to extract the features from pre-processed dataset. Then, Mayfly Optimization (MO) algorithm is performed to pick the relevant features from the set of features. Finally, two deep learning procedures, ResNet model and GoogleNet model, are hybridized to achieve the prediction process. Our system examines two different kinds of publicly available text datasets to identify COVID-19 disease as well as to predict mortality rate and recovery rate using those datasets. There are four different datasets are taken to analyse the performance, in which the proposed method achieves 97.56% accuracy which is 1.40% greater than Linear Regression (LR) and Multinomial Naive Bayesian (MNB), 3.39% higher than Random Forest (RF) and Stochastic gradient boosting (SGB) as well as 5.32% higher than Decision tree (DT) and Bagging techniques if first dataset. When compared to existing machine learning models, the simulation result indicates that a proposed hybrid deep learning method is valuable in corona virus identification and future mortality forecast study." @default.
- W4309485612 created "2022-11-28" @default.
- W4309485612 creator A5047199532 @default.
- W4309485612 creator A5076379870 @default.
- W4309485612 date "2022-11-18" @default.
- W4309485612 modified "2023-10-11" @default.
- W4309485612 title "Future forecasting prediction of Covid-19 using hybrid deep learning algorithm" @default.
- W4309485612 cites W2097117768 @default.
- W4309485612 cites W2111363946 @default.
- W4309485612 cites W2139525108 @default.
- W4309485612 cites W2194775991 @default.
- W4309485612 cites W2752032793 @default.
- W4309485612 cites W2895337855 @default.
- W4309485612 cites W2896443452 @default.
- W4309485612 cites W2904689355 @default.
- W4309485612 cites W2905284068 @default.
- W4309485612 cites W3012571097 @default.
- W4309485612 cites W3013530892 @default.
- W4309485612 cites W3023280312 @default.
- W4309485612 cites W3023618360 @default.
- W4309485612 cites W3025578972 @default.
- W4309485612 cites W3029517552 @default.
- W4309485612 cites W3030419021 @default.
- W4309485612 cites W3036908895 @default.
- W4309485612 cites W3039673966 @default.
- W4309485612 cites W3040299034 @default.
- W4309485612 cites W3041463877 @default.
- W4309485612 cites W3047000417 @default.
- W4309485612 cites W3048123412 @default.
- W4309485612 cites W3048453447 @default.
- W4309485612 cites W3049701554 @default.
- W4309485612 cites W3089265909 @default.
- W4309485612 cites W3100866969 @default.
- W4309485612 cites W3104951425 @default.
- W4309485612 cites W3107766422 @default.
- W4309485612 cites W3110804228 @default.
- W4309485612 cites W3120117568 @default.
- W4309485612 cites W3133191822 @default.
- W4309485612 cites W3155958087 @default.
- W4309485612 cites W3163126358 @default.
- W4309485612 cites W3165608771 @default.
- W4309485612 cites W3180846963 @default.
- W4309485612 cites W3184886727 @default.
- W4309485612 cites W3200868131 @default.
- W4309485612 cites W3207471891 @default.
- W4309485612 cites W3207849004 @default.
- W4309485612 cites W3209594828 @default.
- W4309485612 cites W4220723470 @default.
- W4309485612 doi "https://doi.org/10.1007/s11042-022-14219-7" @default.
- W4309485612 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36415331" @default.
- W4309485612 hasPublicationYear "2022" @default.
- W4309485612 type Work @default.
- W4309485612 citedByCount "0" @default.
- W4309485612 crossrefType "journal-article" @default.
- W4309485612 hasAuthorship W4309485612A5047199532 @default.
- W4309485612 hasAuthorship W4309485612A5076379870 @default.
- W4309485612 hasBestOaLocation W43094856121 @default.
- W4309485612 hasConcept C108583219 @default.
- W4309485612 hasConcept C11413529 @default.
- W4309485612 hasConcept C119857082 @default.
- W4309485612 hasConcept C12267149 @default.
- W4309485612 hasConcept C124101348 @default.
- W4309485612 hasConcept C154945302 @default.
- W4309485612 hasConcept C169258074 @default.
- W4309485612 hasConcept C33724603 @default.
- W4309485612 hasConcept C41008148 @default.
- W4309485612 hasConcept C46686674 @default.
- W4309485612 hasConcept C52001869 @default.
- W4309485612 hasConcept C70153297 @default.
- W4309485612 hasConcept C84525736 @default.
- W4309485612 hasConceptScore W4309485612C108583219 @default.
- W4309485612 hasConceptScore W4309485612C11413529 @default.
- W4309485612 hasConceptScore W4309485612C119857082 @default.
- W4309485612 hasConceptScore W4309485612C12267149 @default.
- W4309485612 hasConceptScore W4309485612C124101348 @default.
- W4309485612 hasConceptScore W4309485612C154945302 @default.
- W4309485612 hasConceptScore W4309485612C169258074 @default.
- W4309485612 hasConceptScore W4309485612C33724603 @default.
- W4309485612 hasConceptScore W4309485612C41008148 @default.
- W4309485612 hasConceptScore W4309485612C46686674 @default.
- W4309485612 hasConceptScore W4309485612C52001869 @default.
- W4309485612 hasConceptScore W4309485612C70153297 @default.
- W4309485612 hasConceptScore W4309485612C84525736 @default.
- W4309485612 hasIssue "15" @default.
- W4309485612 hasLocation W43094856121 @default.
- W4309485612 hasLocation W43094856122 @default.
- W4309485612 hasLocation W43094856123 @default.
- W4309485612 hasOpenAccess W4309485612 @default.
- W4309485612 hasPrimaryLocation W43094856121 @default.
- W4309485612 hasRelatedWork W1985505753 @default.
- W4309485612 hasRelatedWork W2766514146 @default.
- W4309485612 hasRelatedWork W2885516856 @default.
- W4309485612 hasRelatedWork W2885778889 @default.
- W4309485612 hasRelatedWork W2967733078 @default.
- W4309485612 hasRelatedWork W3094138326 @default.
- W4309485612 hasRelatedWork W3137904399 @default.
- W4309485612 hasRelatedWork W4289703016 @default.
- W4309485612 hasRelatedWork W4310224730 @default.