Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309490634> ?p ?o ?g. }
- W4309490634 endingPage "495" @default.
- W4309490634 startingPage "471" @default.
- W4309490634 abstract "Abstract Video instance segmentation is one of the core problems in computer vision. Formulating a purely learning-based method, which models the generic track management required to solve the video instance segmentation task, is a highly challenging problem. In this work, we propose a novel learning framework where the entire video instance segmentation problem is modeled jointly. To this end, we design a graph neural network that in each frame jointly processes all detections and a memory of previously seen tracks. Past information is considered and processed via a recurrent connection. We demonstrate the effectiveness of the proposed approach in comprehensive experiments. Our approach operates online at over 25 FPS and obtains 16.3 AP on the challenging OVIS benchmark, setting a new state-of-the-art. We further conduct detailed ablative experiments that validate the different aspects of our approach. Code is available at https://github.com/emibr948/RGNNVIS-PlusPlus ." @default.
- W4309490634 created "2022-11-28" @default.
- W4309490634 creator A5001393164 @default.
- W4309490634 creator A5037299085 @default.
- W4309490634 creator A5042087981 @default.
- W4309490634 creator A5068158266 @default.
- W4309490634 date "2022-11-18" @default.
- W4309490634 modified "2023-09-26" @default.
- W4309490634 title "Recurrent Graph Neural Networks for Video Instance Segmentation" @default.
- W4309490634 cites W1689711448 @default.
- W4309490634 cites W2064675550 @default.
- W4309490634 cites W2092594871 @default.
- W4309490634 cites W2116341502 @default.
- W4309490634 cites W2132320224 @default.
- W4309490634 cites W2194775991 @default.
- W4309490634 cites W2340897893 @default.
- W4309490634 cites W2574271221 @default.
- W4309490634 cites W2603203130 @default.
- W4309490634 cites W2795587607 @default.
- W4309490634 cites W2916797271 @default.
- W4309490634 cites W2962825871 @default.
- W4309490634 cites W2962967409 @default.
- W4309490634 cites W2963849369 @default.
- W4309490634 cites W2964086649 @default.
- W4309490634 cites W2964199361 @default.
- W4309490634 cites W2982723417 @default.
- W4309490634 cites W2990745571 @default.
- W4309490634 cites W2993182889 @default.
- W4309490634 cites W2996435388 @default.
- W4309490634 cites W3005170598 @default.
- W4309490634 cites W3009672847 @default.
- W4309490634 cites W3034275286 @default.
- W4309490634 cites W3034499084 @default.
- W4309490634 cites W3034739212 @default.
- W4309490634 cites W3035442500 @default.
- W4309490634 cites W3035564946 @default.
- W4309490634 cites W3096609285 @default.
- W4309490634 cites W3109372619 @default.
- W4309490634 cites W3110109236 @default.
- W4309490634 cites W3138516171 @default.
- W4309490634 cites W3167949052 @default.
- W4309490634 cites W3169933013 @default.
- W4309490634 cites W3171516518 @default.
- W4309490634 cites W3202509201 @default.
- W4309490634 cites W3208503374 @default.
- W4309490634 cites W3215556244 @default.
- W4309490634 cites W4205378506 @default.
- W4309490634 cites W4214613769 @default.
- W4309490634 cites W4214627427 @default.
- W4309490634 cites W4288083516 @default.
- W4309490634 doi "https://doi.org/10.1007/s11263-022-01703-8" @default.
- W4309490634 hasPublicationYear "2022" @default.
- W4309490634 type Work @default.
- W4309490634 citedByCount "0" @default.
- W4309490634 crossrefType "journal-article" @default.
- W4309490634 hasAuthorship W4309490634A5001393164 @default.
- W4309490634 hasAuthorship W4309490634A5037299085 @default.
- W4309490634 hasAuthorship W4309490634A5042087981 @default.
- W4309490634 hasAuthorship W4309490634A5068158266 @default.
- W4309490634 hasBestOaLocation W43094906341 @default.
- W4309490634 hasConcept C108583219 @default.
- W4309490634 hasConcept C119857082 @default.
- W4309490634 hasConcept C124504099 @default.
- W4309490634 hasConcept C132525143 @default.
- W4309490634 hasConcept C13280743 @default.
- W4309490634 hasConcept C147168706 @default.
- W4309490634 hasConcept C153180895 @default.
- W4309490634 hasConcept C154945302 @default.
- W4309490634 hasConcept C177264268 @default.
- W4309490634 hasConcept C185798385 @default.
- W4309490634 hasConcept C199360897 @default.
- W4309490634 hasConcept C205649164 @default.
- W4309490634 hasConcept C2776760102 @default.
- W4309490634 hasConcept C31972630 @default.
- W4309490634 hasConcept C41008148 @default.
- W4309490634 hasConcept C50644808 @default.
- W4309490634 hasConcept C80444323 @default.
- W4309490634 hasConcept C89600930 @default.
- W4309490634 hasConceptScore W4309490634C108583219 @default.
- W4309490634 hasConceptScore W4309490634C119857082 @default.
- W4309490634 hasConceptScore W4309490634C124504099 @default.
- W4309490634 hasConceptScore W4309490634C132525143 @default.
- W4309490634 hasConceptScore W4309490634C13280743 @default.
- W4309490634 hasConceptScore W4309490634C147168706 @default.
- W4309490634 hasConceptScore W4309490634C153180895 @default.
- W4309490634 hasConceptScore W4309490634C154945302 @default.
- W4309490634 hasConceptScore W4309490634C177264268 @default.
- W4309490634 hasConceptScore W4309490634C185798385 @default.
- W4309490634 hasConceptScore W4309490634C199360897 @default.
- W4309490634 hasConceptScore W4309490634C205649164 @default.
- W4309490634 hasConceptScore W4309490634C2776760102 @default.
- W4309490634 hasConceptScore W4309490634C31972630 @default.
- W4309490634 hasConceptScore W4309490634C41008148 @default.
- W4309490634 hasConceptScore W4309490634C50644808 @default.
- W4309490634 hasConceptScore W4309490634C80444323 @default.
- W4309490634 hasConceptScore W4309490634C89600930 @default.
- W4309490634 hasFunder F4320322327 @default.
- W4309490634 hasIssue "2" @default.