Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309492364> ?p ?o ?g. }
- W4309492364 endingPage "3406" @default.
- W4309492364 startingPage "3389" @default.
- W4309492364 abstract "Abstract Accurately estimating regional‐scale crop yields is substantial in determining current agricultural production performance and effective agricultural land management. The Yuncheng Basin is an important grain‐producing area in the Shanxi Province. This paper used Sentinel 2A with a spatial resolution of 10 m and MODIS with a temporal resolution of 1 d in 2020. The spatial and temporal nonlocal filter‐based fusion model (STNLFFM) was used to obtain fused data with a spatial resolution of 10 m and a temporal resolution of 1 d, combined with the Carnegie–Ames–Stanford Approach (CASA) and light‐use efficiency model to achieve summer maize ( Zea mays L.) yield estimation. The results showed that the fused normalized difference vegetation index (NDVI) could inherit the spatial Sentinel‐2A NDVI details and express the spatial differences between smaller features more effectively. The STNLFFM NDVI curve was consistent with the actual summer maize growth condition, which accurately reflects the NDVI trend and local abrupt change information during the summer maize growth period. Moreover, the fused NDVI was influenced by topographic differences and artificial irrigation factors, whereas the summer maize yield in mountainous and plateau areas of the Yuncheng Basin was <5,000 kg ha −1 and those in the alluvial plain of the Sushui River reached 8,000 kg ha −1 . The accuracy of the yield estimation model constructed based on STNLFFM NDVI (mean absolute percentage error [MAPE] = 5.47%, −13.74% ≤ relative error [RE] ≤0.12%) was significantly higher than that of the model based on MODIS NDVI (MAPE = 15.65%, −19.67% ≤ RE ≤ 20.88%), indicating that the use of spatio‐temporal fusion technology can effectively improve the summer maize yield estimation accuracy." @default.
- W4309492364 created "2022-11-28" @default.
- W4309492364 creator A5022166190 @default.
- W4309492364 creator A5033727249 @default.
- W4309492364 creator A5051862361 @default.
- W4309492364 creator A5059090036 @default.
- W4309492364 creator A5066695293 @default.
- W4309492364 date "2022-11-01" @default.
- W4309492364 modified "2023-09-26" @default.
- W4309492364 title "Yield estimation of summer maize based on multi‐source remote‐sensing data" @default.
- W4309492364 cites W1614912833 @default.
- W4309492364 cites W1982627164 @default.
- W4309492364 cites W1982956952 @default.
- W4309492364 cites W1986629820 @default.
- W4309492364 cites W1987927366 @default.
- W4309492364 cites W1999428071 @default.
- W4309492364 cites W2003224325 @default.
- W4309492364 cites W2013584972 @default.
- W4309492364 cites W2036627824 @default.
- W4309492364 cites W2037364101 @default.
- W4309492364 cites W2040638734 @default.
- W4309492364 cites W2056811372 @default.
- W4309492364 cites W2059299304 @default.
- W4309492364 cites W2059488281 @default.
- W4309492364 cites W2061929982 @default.
- W4309492364 cites W2073487498 @default.
- W4309492364 cites W2077182785 @default.
- W4309492364 cites W2082238948 @default.
- W4309492364 cites W2088603520 @default.
- W4309492364 cites W2092547149 @default.
- W4309492364 cites W2109479674 @default.
- W4309492364 cites W2109606373 @default.
- W4309492364 cites W2167891208 @default.
- W4309492364 cites W2200121095 @default.
- W4309492364 cites W2200350976 @default.
- W4309492364 cites W2224309144 @default.
- W4309492364 cites W2408286848 @default.
- W4309492364 cites W2480184802 @default.
- W4309492364 cites W2499691472 @default.
- W4309492364 cites W2588316148 @default.
- W4309492364 cites W2751239848 @default.
- W4309492364 cites W2767667598 @default.
- W4309492364 cites W2767886251 @default.
- W4309492364 cites W2789710987 @default.
- W4309492364 cites W2793445582 @default.
- W4309492364 cites W2794195626 @default.
- W4309492364 cites W2795018073 @default.
- W4309492364 cites W2799968660 @default.
- W4309492364 cites W2802087778 @default.
- W4309492364 cites W2908512565 @default.
- W4309492364 cites W2908998459 @default.
- W4309492364 cites W2911008972 @default.
- W4309492364 cites W2922288958 @default.
- W4309492364 cites W2931894371 @default.
- W4309492364 cites W2944702146 @default.
- W4309492364 cites W2964052062 @default.
- W4309492364 cites W2996041315 @default.
- W4309492364 cites W3003226911 @default.
- W4309492364 cites W3006385006 @default.
- W4309492364 cites W3006441334 @default.
- W4309492364 cites W3021275706 @default.
- W4309492364 cites W3024617491 @default.
- W4309492364 cites W3033521935 @default.
- W4309492364 cites W3043641862 @default.
- W4309492364 cites W3091000723 @default.
- W4309492364 cites W3102533665 @default.
- W4309492364 cites W3106191915 @default.
- W4309492364 cites W3136436158 @default.
- W4309492364 cites W3138424759 @default.
- W4309492364 cites W3139238116 @default.
- W4309492364 cites W3148921495 @default.
- W4309492364 cites W3151289121 @default.
- W4309492364 cites W3155755426 @default.
- W4309492364 cites W3169469595 @default.
- W4309492364 cites W3176129845 @default.
- W4309492364 cites W3180978627 @default.
- W4309492364 cites W3182602688 @default.
- W4309492364 cites W3186427810 @default.
- W4309492364 cites W3192508862 @default.
- W4309492364 cites W3204690962 @default.
- W4309492364 cites W3205027094 @default.
- W4309492364 cites W3205362277 @default.
- W4309492364 cites W3206562395 @default.
- W4309492364 cites W3209785440 @default.
- W4309492364 cites W3214090787 @default.
- W4309492364 cites W4200103611 @default.
- W4309492364 cites W4205823752 @default.
- W4309492364 cites W4206478787 @default.
- W4309492364 cites W4210255003 @default.
- W4309492364 cites W4210629560 @default.
- W4309492364 cites W4210736732 @default.
- W4309492364 cites W4211235144 @default.
- W4309492364 cites W4220960836 @default.
- W4309492364 cites W4225717744 @default.
- W4309492364 cites W4229376347 @default.
- W4309492364 cites W4280594255 @default.
- W4309492364 cites W4283165524 @default.
- W4309492364 cites W4382897250 @default.