Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309503926> ?p ?o ?g. }
- W4309503926 endingPage "81" @default.
- W4309503926 startingPage "74" @default.
- W4309503926 abstract "Acute respiratory distress syndrome (ARDS) is common in intensive care units with high mortality rate and mechanical ventilation (MV) is the most important related treatment. Early prediction of MV duration has benefit for patients risk stratification and care strategies support.To develop an explainable model for predicting mechanical ventilation (MV) duration in patients with ARDS using the machine learning (ML) approach.The number of 1,148, 1,697, and 29 ARDS patients admitted to intensive care units (ICU) in the MIMIC-IV, eICU-CRD, and AmsterdamUMCdb databases were included in the study. Features at MV initiation from the MIMIC-IV dataset were used to train prediction models based on seven supervised machine learning algorithms. After 5-fold cross-validation for hyperparameters tuning, the hyperparameters- optimized model of different algorithms was tested by external datasets extracted from eICU-CRD and Amsterdamumcdb. Finally, three descriptive machine learning explanation methods were conducted for the model explanation.The XGBoosting model showed the most stable and accurate performance among two testing datasets (RMSE= 5.57 and 5.46 days in eICU-CRD and AmsterdamUMCdb) and was selected as the optimal model. The model explanation based on SHAP, LIME, and DALEX results showed a consistent result, vasopressor, PH, and SOFA score had the highest effect on MV duration prediction.ML models with features at MV initiation can accurate predict MV duration in patients with ARDS in ICUs. Among seven algorithms, XGB models showed the best performance (RMSE= 5.57 and 5.46 in two external datasets). LIME, SHAP, and Breakdown methods showed good performance as AXI methods." @default.
- W4309503926 created "2022-11-28" @default.
- W4309503926 creator A5004876783 @default.
- W4309503926 creator A5031755593 @default.
- W4309503926 creator A5055470393 @default.
- W4309503926 creator A5057743730 @default.
- W4309503926 creator A5071642874 @default.
- W4309503926 creator A5079622715 @default.
- W4309503926 creator A5080102032 @default.
- W4309503926 creator A5090758948 @default.
- W4309503926 date "2023-03-01" @default.
- W4309503926 modified "2023-10-14" @default.
- W4309503926 title "Developing an explainable machine learning model to predict the mechanical ventilation duration of patients with ARDS in intensive care units" @default.
- W4309503926 cites W1543780412 @default.
- W4309503926 cites W1989471045 @default.
- W4309503926 cites W2000400005 @default.
- W4309503926 cites W2015945137 @default.
- W4309503926 cites W2048391620 @default.
- W4309503926 cites W2062327003 @default.
- W4309503926 cites W2068854215 @default.
- W4309503926 cites W2075446217 @default.
- W4309503926 cites W2162975183 @default.
- W4309503926 cites W2183831387 @default.
- W4309503926 cites W2211662711 @default.
- W4309503926 cites W2286228001 @default.
- W4309503926 cites W2341825592 @default.
- W4309503926 cites W2497572233 @default.
- W4309503926 cites W2527237442 @default.
- W4309503926 cites W2558379714 @default.
- W4309503926 cites W2609474397 @default.
- W4309503926 cites W2616100920 @default.
- W4309503926 cites W2797010621 @default.
- W4309503926 cites W2806066631 @default.
- W4309503926 cites W2891400669 @default.
- W4309503926 cites W2921159790 @default.
- W4309503926 cites W2953390211 @default.
- W4309503926 cites W3008227503 @default.
- W4309503926 cites W3010095828 @default.
- W4309503926 cites W3012662704 @default.
- W4309503926 cites W3131505924 @default.
- W4309503926 cites W3196218081 @default.
- W4309503926 cites W4231930751 @default.
- W4309503926 cites W4283259062 @default.
- W4309503926 doi "https://doi.org/10.1016/j.hrtlng.2022.11.005" @default.
- W4309503926 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36423504" @default.
- W4309503926 hasPublicationYear "2023" @default.
- W4309503926 type Work @default.
- W4309503926 citedByCount "7" @default.
- W4309503926 countsByYear W43095039262023 @default.
- W4309503926 crossrefType "journal-article" @default.
- W4309503926 hasAuthorship W4309503926A5004876783 @default.
- W4309503926 hasAuthorship W4309503926A5031755593 @default.
- W4309503926 hasAuthorship W4309503926A5055470393 @default.
- W4309503926 hasAuthorship W4309503926A5057743730 @default.
- W4309503926 hasAuthorship W4309503926A5071642874 @default.
- W4309503926 hasAuthorship W4309503926A5079622715 @default.
- W4309503926 hasAuthorship W4309503926A5080102032 @default.
- W4309503926 hasAuthorship W4309503926A5090758948 @default.
- W4309503926 hasBestOaLocation W43095039261 @default.
- W4309503926 hasConcept C112758219 @default.
- W4309503926 hasConcept C119857082 @default.
- W4309503926 hasConcept C124952713 @default.
- W4309503926 hasConcept C126322002 @default.
- W4309503926 hasConcept C142362112 @default.
- W4309503926 hasConcept C154945302 @default.
- W4309503926 hasConcept C177713679 @default.
- W4309503926 hasConcept C2776348555 @default.
- W4309503926 hasConcept C2776376669 @default.
- W4309503926 hasConcept C2777080012 @default.
- W4309503926 hasConcept C2777714996 @default.
- W4309503926 hasConcept C2780347030 @default.
- W4309503926 hasConcept C2909621147 @default.
- W4309503926 hasConcept C2987404301 @default.
- W4309503926 hasConcept C41008148 @default.
- W4309503926 hasConcept C71924100 @default.
- W4309503926 hasConcept C8642999 @default.
- W4309503926 hasConceptScore W4309503926C112758219 @default.
- W4309503926 hasConceptScore W4309503926C119857082 @default.
- W4309503926 hasConceptScore W4309503926C124952713 @default.
- W4309503926 hasConceptScore W4309503926C126322002 @default.
- W4309503926 hasConceptScore W4309503926C142362112 @default.
- W4309503926 hasConceptScore W4309503926C154945302 @default.
- W4309503926 hasConceptScore W4309503926C177713679 @default.
- W4309503926 hasConceptScore W4309503926C2776348555 @default.
- W4309503926 hasConceptScore W4309503926C2776376669 @default.
- W4309503926 hasConceptScore W4309503926C2777080012 @default.
- W4309503926 hasConceptScore W4309503926C2777714996 @default.
- W4309503926 hasConceptScore W4309503926C2780347030 @default.
- W4309503926 hasConceptScore W4309503926C2909621147 @default.
- W4309503926 hasConceptScore W4309503926C2987404301 @default.
- W4309503926 hasConceptScore W4309503926C41008148 @default.
- W4309503926 hasConceptScore W4309503926C71924100 @default.
- W4309503926 hasConceptScore W4309503926C8642999 @default.
- W4309503926 hasLocation W43095039261 @default.
- W4309503926 hasLocation W43095039262 @default.
- W4309503926 hasLocation W43095039263 @default.
- W4309503926 hasOpenAccess W4309503926 @default.
- W4309503926 hasPrimaryLocation W43095039261 @default.