Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309508738> ?p ?o ?g. }
- W4309508738 endingPage "741" @default.
- W4309508738 startingPage "727" @default.
- W4309508738 abstract "Abstract Purpose This study aimed to develop deep learning (DL) models based on multicentre biparametric magnetic resonance imaging (bpMRI) for the diagnosis of clinically significant prostate cancer (csPCa) and compare the performance of these models with that of the Prostate Imaging and Reporting and Data System (PI-RADS) assessment by expert radiologists based on multiparametric MRI (mpMRI). Methods We included 1861 consecutive male patients who underwent radical prostatectomy or biopsy at seven hospitals with mpMRI. These patients were divided into the training (1216 patients in three hospitals) and external validation cohorts (645 patients in four hospitals). PI-RADS assessment was performed by expert radiologists. We developed DL models for the classification between benign and malignant lesions (DL-BM) and that between csPCa and non-csPCa (DL-CS). An integrated model combining PI-RADS and the DL-CS model, abbreviated as PIDL-CS, was developed. The performances of the DL models and PIDL-CS were compared with that of PI-RADS. Results In each external validation cohort, the area under the receiver operating characteristic curve (AUC) values of the DL-BM and DL-CS models were not significantly different from that of PI-RADS ( P > 0.05), whereas the AUC of PIDL-CS was superior to that of PI-RADS ( P < 0.05), except for one external validation cohort ( P > 0.05). The specificity of PIDL-CS for the detection of csPCa was much higher than that of PI-RADS ( P < 0.05). Conclusion Our proposed DL models can be a potential non-invasive auxiliary tool for predicting csPCa. Furthermore, PIDL-CS greatly increased the specificity of csPCa detection compared with PI-RADS assessment by expert radiologists, greatly reducing unnecessary biopsies and helping radiologists achieve a precise diagnosis of csPCa." @default.
- W4309508738 created "2022-11-28" @default.
- W4309508738 creator A5001905653 @default.
- W4309508738 creator A5003610429 @default.
- W4309508738 creator A5007613197 @default.
- W4309508738 creator A5010206530 @default.
- W4309508738 creator A5012492614 @default.
- W4309508738 creator A5015676600 @default.
- W4309508738 creator A5016957731 @default.
- W4309508738 creator A5030728253 @default.
- W4309508738 creator A5031534565 @default.
- W4309508738 creator A5032377581 @default.
- W4309508738 creator A5042799755 @default.
- W4309508738 creator A5047562121 @default.
- W4309508738 creator A5055626216 @default.
- W4309508738 creator A5056611330 @default.
- W4309508738 creator A5057203150 @default.
- W4309508738 creator A5058927911 @default.
- W4309508738 creator A5085320531 @default.
- W4309508738 creator A5085386508 @default.
- W4309508738 date "2022-11-21" @default.
- W4309508738 modified "2023-10-16" @default.
- W4309508738 title "Predicting clinically significant prostate cancer with a deep learning approach: a multicentre retrospective study" @default.
- W4309508738 cites W1827911007 @default.
- W4309508738 cites W2110881680 @default.
- W4309508738 cites W2124539070 @default.
- W4309508738 cites W2168391852 @default.
- W4309508738 cites W2194775991 @default.
- W4309508738 cites W2402599287 @default.
- W4309508738 cites W2409456704 @default.
- W4309508738 cites W2530952499 @default.
- W4309508738 cites W2547373340 @default.
- W4309508738 cites W2577453388 @default.
- W4309508738 cites W2736990592 @default.
- W4309508738 cites W2748604568 @default.
- W4309508738 cites W2782598129 @default.
- W4309508738 cites W2793905111 @default.
- W4309508738 cites W2803760365 @default.
- W4309508738 cites W2886525586 @default.
- W4309508738 cites W2891497399 @default.
- W4309508738 cites W2903204344 @default.
- W4309508738 cites W2911312407 @default.
- W4309508738 cites W2917364154 @default.
- W4309508738 cites W2919308409 @default.
- W4309508738 cites W2922071185 @default.
- W4309508738 cites W2937444132 @default.
- W4309508738 cites W2963125010 @default.
- W4309508738 cites W2963446712 @default.
- W4309508738 cites W2979653841 @default.
- W4309508738 cites W3038833400 @default.
- W4309508738 cites W3084013739 @default.
- W4309508738 cites W3102963141 @default.
- W4309508738 cites W3119494456 @default.
- W4309508738 cites W3120137913 @default.
- W4309508738 cites W3128646645 @default.
- W4309508738 cites W3138961261 @default.
- W4309508738 cites W3161279479 @default.
- W4309508738 cites W3174290331 @default.
- W4309508738 cites W3197380786 @default.
- W4309508738 cites W4226141537 @default.
- W4309508738 cites W4297775537 @default.
- W4309508738 doi "https://doi.org/10.1007/s00259-022-06036-9" @default.
- W4309508738 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36409317" @default.
- W4309508738 hasPublicationYear "2022" @default.
- W4309508738 type Work @default.
- W4309508738 citedByCount "5" @default.
- W4309508738 countsByYear W43095087382023 @default.
- W4309508738 crossrefType "journal-article" @default.
- W4309508738 hasAuthorship W4309508738A5001905653 @default.
- W4309508738 hasAuthorship W4309508738A5003610429 @default.
- W4309508738 hasAuthorship W4309508738A5007613197 @default.
- W4309508738 hasAuthorship W4309508738A5010206530 @default.
- W4309508738 hasAuthorship W4309508738A5012492614 @default.
- W4309508738 hasAuthorship W4309508738A5015676600 @default.
- W4309508738 hasAuthorship W4309508738A5016957731 @default.
- W4309508738 hasAuthorship W4309508738A5030728253 @default.
- W4309508738 hasAuthorship W4309508738A5031534565 @default.
- W4309508738 hasAuthorship W4309508738A5032377581 @default.
- W4309508738 hasAuthorship W4309508738A5042799755 @default.
- W4309508738 hasAuthorship W4309508738A5047562121 @default.
- W4309508738 hasAuthorship W4309508738A5055626216 @default.
- W4309508738 hasAuthorship W4309508738A5056611330 @default.
- W4309508738 hasAuthorship W4309508738A5057203150 @default.
- W4309508738 hasAuthorship W4309508738A5058927911 @default.
- W4309508738 hasAuthorship W4309508738A5085320531 @default.
- W4309508738 hasAuthorship W4309508738A5085386508 @default.
- W4309508738 hasBestOaLocation W43095087381 @default.
- W4309508738 hasConcept C121608353 @default.
- W4309508738 hasConcept C126322002 @default.
- W4309508738 hasConcept C126838900 @default.
- W4309508738 hasConcept C126894567 @default.
- W4309508738 hasConcept C143409427 @default.
- W4309508738 hasConcept C167135981 @default.
- W4309508738 hasConcept C2775934546 @default.
- W4309508738 hasConcept C2776235491 @default.
- W4309508738 hasConcept C2779466945 @default.
- W4309508738 hasConcept C2780192828 @default.
- W4309508738 hasConcept C2910607126 @default.