Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309549941> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4309549941 abstract "Recently, intelligent video surveillance technologies using unmanned aerial vehicles (UAVs) have been considerably increased in the transportation sector. Real time collection of traffic videos by the use of UAVs finds useful to monitor the traffic flow and road conditions. Since traffic jams have become common in urban areas, it is needed to design artificial intelligence (AI) based recognition techniques to attain effective traffic flow monitoring. Besides, the traffic flow monitoring system can assist the traffic managers to start efficient dispersal actions. Therefore, this study designs a real time traffic flow monitoring system using deep learning (DL) and UAVs, called RTTFM-DL. The proposed RTTFM-DL technique aims to detect vehicles, count vehicles, estimate speed and determine traffic flow. In addition, an efficient vehicle detection model is proposed by the use of Faster Regional Convolutional Neural Network (Faster RCNN) with Residual Network (ResNet). Also, a detection line based vehicle counting approach is designed, which is based on overlap ratio. Finally, traffic flow monitoring takes place based on the estimated vehicle count and vehicle speed. In order to guarantee the effectual performance of the RTTFM-DL technique, a series of experimental analyses take place and the results are examined under varying aspects. The experimental outcomes highlighted the betterment of the RTTFM-DL technique over the recent techniques. The RTTFM-DL technique has gained improved outcomes with a higher accuracy of 0.975." @default.
- W4309549941 created "2022-11-28" @default.
- W4309549941 creator A5007208489 @default.
- W4309549941 creator A5033711346 @default.
- W4309549941 creator A5034495016 @default.
- W4309549941 creator A5044426102 @default.
- W4309549941 creator A5044771843 @default.
- W4309549941 creator A5063724346 @default.
- W4309549941 date "2022-11-15" @default.
- W4309549941 modified "2023-09-26" @default.
- W4309549941 title "Modeling of Real Time Traffic Flow Monitoring System Using Deep Learning and Unmanned Aerial Vehicles" @default.
- W4309549941 doi "https://doi.org/10.13052/jmm1550-4646.1926" @default.
- W4309549941 hasPublicationYear "2022" @default.
- W4309549941 type Work @default.
- W4309549941 citedByCount "1" @default.
- W4309549941 countsByYear W43095499412023 @default.
- W4309549941 crossrefType "journal-article" @default.
- W4309549941 hasAuthorship W4309549941A5007208489 @default.
- W4309549941 hasAuthorship W4309549941A5033711346 @default.
- W4309549941 hasAuthorship W4309549941A5034495016 @default.
- W4309549941 hasAuthorship W4309549941A5044426102 @default.
- W4309549941 hasAuthorship W4309549941A5044771843 @default.
- W4309549941 hasAuthorship W4309549941A5063724346 @default.
- W4309549941 hasBestOaLocation W43095499411 @default.
- W4309549941 hasConcept C108583219 @default.
- W4309549941 hasConcept C11413529 @default.
- W4309549941 hasConcept C127413603 @default.
- W4309549941 hasConcept C154945302 @default.
- W4309549941 hasConcept C155512373 @default.
- W4309549941 hasConcept C207512268 @default.
- W4309549941 hasConcept C22212356 @default.
- W4309549941 hasConcept C2779888511 @default.
- W4309549941 hasConcept C38652104 @default.
- W4309549941 hasConcept C41008148 @default.
- W4309549941 hasConcept C44154836 @default.
- W4309549941 hasConcept C47796450 @default.
- W4309549941 hasConcept C64093975 @default.
- W4309549941 hasConcept C79403827 @default.
- W4309549941 hasConcept C81363708 @default.
- W4309549941 hasConceptScore W4309549941C108583219 @default.
- W4309549941 hasConceptScore W4309549941C11413529 @default.
- W4309549941 hasConceptScore W4309549941C127413603 @default.
- W4309549941 hasConceptScore W4309549941C154945302 @default.
- W4309549941 hasConceptScore W4309549941C155512373 @default.
- W4309549941 hasConceptScore W4309549941C207512268 @default.
- W4309549941 hasConceptScore W4309549941C22212356 @default.
- W4309549941 hasConceptScore W4309549941C2779888511 @default.
- W4309549941 hasConceptScore W4309549941C38652104 @default.
- W4309549941 hasConceptScore W4309549941C41008148 @default.
- W4309549941 hasConceptScore W4309549941C44154836 @default.
- W4309549941 hasConceptScore W4309549941C47796450 @default.
- W4309549941 hasConceptScore W4309549941C64093975 @default.
- W4309549941 hasConceptScore W4309549941C79403827 @default.
- W4309549941 hasConceptScore W4309549941C81363708 @default.
- W4309549941 hasLocation W43095499411 @default.
- W4309549941 hasOpenAccess W4309549941 @default.
- W4309549941 hasPrimaryLocation W43095499411 @default.
- W4309549941 hasRelatedWork W2731899572 @default.
- W4309549941 hasRelatedWork W2764195644 @default.
- W4309549941 hasRelatedWork W2782645198 @default.
- W4309549941 hasRelatedWork W2952355076 @default.
- W4309549941 hasRelatedWork W2999805992 @default.
- W4309549941 hasRelatedWork W3116150086 @default.
- W4309549941 hasRelatedWork W3133861977 @default.
- W4309549941 hasRelatedWork W4200173597 @default.
- W4309549941 hasRelatedWork W4312417841 @default.
- W4309549941 hasRelatedWork W4321369474 @default.
- W4309549941 isParatext "false" @default.
- W4309549941 isRetracted "false" @default.
- W4309549941 workType "article" @default.