Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309552783> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4309552783 endingPage "e11665" @default.
- W4309552783 startingPage "e11665" @default.
- W4309552783 abstract "One of the most popular techniques for computer-assisted solution estimates for magnetics and gravity field data is Werner deconvolution. The approaches frequently produce erratic results and may not always forecast the maximum number of the geologic entity that produces them due to the intrinsic instability of potential field data. This led to the application of the K-means machine learning algorithm to further enhance the detection of the geologic potential field-generated bodies. Two substances that resembled dikes were combined to form a synthetic magnetic model. Random noise was added to the synthetic data, to make the solutions a bit more complex. Werner deconvolution technique was applied to the synthetic model to generate solutions. K-means unsupervised machine learning algorithm was applied to the generated solutions created by the synthetic data. We further applied this algorithm to real data sets from a mining site. The clustering result shows a good spatial correspondence with the geologic model, and the method was able to estimate the precise location and depth of the dike bodies. The proposed method is entirely data-driven and has proven to work in the presence of noise." @default.
- W4309552783 created "2022-11-28" @default.
- W4309552783 creator A5057802615 @default.
- W4309552783 creator A5091423016 @default.
- W4309552783 date "2022-11-01" @default.
- W4309552783 modified "2023-10-14" @default.
- W4309552783 title "Application of K-means algorithm to Werner deconvolution solutions for depth and image estimations" @default.
- W4309552783 cites W1977556410 @default.
- W4309552783 cites W1983106005 @default.
- W4309552783 cites W1986277058 @default.
- W4309552783 cites W1987241123 @default.
- W4309552783 cites W1988441749 @default.
- W4309552783 cites W1992419399 @default.
- W4309552783 cites W1999335827 @default.
- W4309552783 cites W2024392312 @default.
- W4309552783 cites W2040342491 @default.
- W4309552783 cites W2060511356 @default.
- W4309552783 cites W2088615746 @default.
- W4309552783 cites W2092159336 @default.
- W4309552783 cites W2097225825 @default.
- W4309552783 cites W2116007522 @default.
- W4309552783 cites W2138867555 @default.
- W4309552783 cites W2153750502 @default.
- W4309552783 cites W2158264768 @default.
- W4309552783 cites W2172044679 @default.
- W4309552783 cites W2460847425 @default.
- W4309552783 cites W2605232094 @default.
- W4309552783 cites W2888770834 @default.
- W4309552783 cites W2913323966 @default.
- W4309552783 cites W1982517484 @default.
- W4309552783 doi "https://doi.org/10.1016/j.heliyon.2022.e11665" @default.
- W4309552783 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36419655" @default.
- W4309552783 hasPublicationYear "2022" @default.
- W4309552783 type Work @default.
- W4309552783 citedByCount "1" @default.
- W4309552783 countsByYear W43095527832023 @default.
- W4309552783 crossrefType "journal-article" @default.
- W4309552783 hasAuthorship W4309552783A5057802615 @default.
- W4309552783 hasAuthorship W4309552783A5091423016 @default.
- W4309552783 hasBestOaLocation W43095527831 @default.
- W4309552783 hasConcept C11413529 @default.
- W4309552783 hasConcept C115961682 @default.
- W4309552783 hasConcept C154945302 @default.
- W4309552783 hasConcept C160920958 @default.
- W4309552783 hasConcept C174576160 @default.
- W4309552783 hasConcept C202444582 @default.
- W4309552783 hasConcept C33923547 @default.
- W4309552783 hasConcept C41008148 @default.
- W4309552783 hasConcept C73555534 @default.
- W4309552783 hasConcept C9652623 @default.
- W4309552783 hasConcept C99498987 @default.
- W4309552783 hasConceptScore W4309552783C11413529 @default.
- W4309552783 hasConceptScore W4309552783C115961682 @default.
- W4309552783 hasConceptScore W4309552783C154945302 @default.
- W4309552783 hasConceptScore W4309552783C160920958 @default.
- W4309552783 hasConceptScore W4309552783C174576160 @default.
- W4309552783 hasConceptScore W4309552783C202444582 @default.
- W4309552783 hasConceptScore W4309552783C33923547 @default.
- W4309552783 hasConceptScore W4309552783C41008148 @default.
- W4309552783 hasConceptScore W4309552783C73555534 @default.
- W4309552783 hasConceptScore W4309552783C9652623 @default.
- W4309552783 hasConceptScore W4309552783C99498987 @default.
- W4309552783 hasFunder F4320317042 @default.
- W4309552783 hasFunder F4320334426 @default.
- W4309552783 hasIssue "11" @default.
- W4309552783 hasLocation W43095527831 @default.
- W4309552783 hasLocation W43095527832 @default.
- W4309552783 hasLocation W43095527833 @default.
- W4309552783 hasOpenAccess W4309552783 @default.
- W4309552783 hasPrimaryLocation W43095527831 @default.
- W4309552783 hasRelatedWork W1519390116 @default.
- W4309552783 hasRelatedWork W1582249177 @default.
- W4309552783 hasRelatedWork W1601492201 @default.
- W4309552783 hasRelatedWork W1993847503 @default.
- W4309552783 hasRelatedWork W2107461329 @default.
- W4309552783 hasRelatedWork W2137554361 @default.
- W4309552783 hasRelatedWork W2359668720 @default.
- W4309552783 hasRelatedWork W2361460797 @default.
- W4309552783 hasRelatedWork W2573131093 @default.
- W4309552783 hasRelatedWork W2776720670 @default.
- W4309552783 hasVolume "8" @default.
- W4309552783 isParatext "false" @default.
- W4309552783 isRetracted "false" @default.
- W4309552783 workType "article" @default.