Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309586586> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4309586586 endingPage "4" @default.
- W4309586586 startingPage "1" @default.
- W4309586586 abstract "Convolutional neural networks are enhanced version of fully connected neural networks. The neural networks are used to recognize objects after training the neural network system for some datasets that can also be divided into classes at the output. These networks were a breakthrough in computer vision filed for object recognition where the system can optimize its parameters for better results with using feed forward and back propagation. The convolutional neural networks reduced the time of training and testing the dataset by replacing the full network nodes connecting to each node in the subsequent layer to some nodes or filter to each subsequent layer node. There are many algorithms for convolutional neural networks ranging from simple algorithms to complex ones. Each algorithm has different hidden layers with different hyper parameters and filters. The activation functions and number of nodes in each layer for each algorithm may be different. The applications for these convolutional neural networks cover many fields such as hand written digit recognition, alphabet handwritten recognition, and any group of objects that can be divided into classes such as cloth, X-ray imaging and many more. The LeNet-5 algorithm is one of the convolutional neural networks. With full analysis of this algorithm, I will prove that a simple module of the algorithm can provide maximum accuracy and minimum loss function than the original algorithm." @default.
- W4309586586 created "2022-11-28" @default.
- W4309586586 creator A5009640596 @default.
- W4309586586 date "2023-01-30" @default.
- W4309586586 modified "2023-09-30" @default.
- W4309586586 title "Optimization Methods for Convolutional Neural Networks – The LeNet-5 Algorithm" @default.
- W4309586586 cites W2007516438 @default.
- W4309586586 cites W2112796928 @default.
- W4309586586 cites W2773616461 @default.
- W4309586586 cites W2789876780 @default.
- W4309586586 cites W2894630215 @default.
- W4309586586 cites W2962957157 @default.
- W4309586586 cites W2963377769 @default.
- W4309586586 cites W2979040987 @default.
- W4309586586 cites W3004446201 @default.
- W4309586586 cites W3200603369 @default.
- W4309586586 cites W3212020119 @default.
- W4309586586 cites W4206569030 @default.
- W4309586586 cites W4232032634 @default.
- W4309586586 doi "https://doi.org/10.35940/ijrte.e7355.0111523" @default.
- W4309586586 hasPublicationYear "2023" @default.
- W4309586586 type Work @default.
- W4309586586 citedByCount "0" @default.
- W4309586586 crossrefType "journal-article" @default.
- W4309586586 hasAuthorship W4309586586A5009640596 @default.
- W4309586586 hasBestOaLocation W43095865861 @default.
- W4309586586 hasConcept C108583219 @default.
- W4309586586 hasConcept C111472728 @default.
- W4309586586 hasConcept C11413529 @default.
- W4309586586 hasConcept C121144440 @default.
- W4309586586 hasConcept C127413603 @default.
- W4309586586 hasConcept C138885662 @default.
- W4309586586 hasConcept C153180895 @default.
- W4309586586 hasConcept C154945302 @default.
- W4309586586 hasConcept C175202392 @default.
- W4309586586 hasConcept C2780586882 @default.
- W4309586586 hasConcept C38365724 @default.
- W4309586586 hasConcept C41008148 @default.
- W4309586586 hasConcept C50644808 @default.
- W4309586586 hasConcept C62611344 @default.
- W4309586586 hasConcept C66938386 @default.
- W4309586586 hasConcept C81363708 @default.
- W4309586586 hasConceptScore W4309586586C108583219 @default.
- W4309586586 hasConceptScore W4309586586C111472728 @default.
- W4309586586 hasConceptScore W4309586586C11413529 @default.
- W4309586586 hasConceptScore W4309586586C121144440 @default.
- W4309586586 hasConceptScore W4309586586C127413603 @default.
- W4309586586 hasConceptScore W4309586586C138885662 @default.
- W4309586586 hasConceptScore W4309586586C153180895 @default.
- W4309586586 hasConceptScore W4309586586C154945302 @default.
- W4309586586 hasConceptScore W4309586586C175202392 @default.
- W4309586586 hasConceptScore W4309586586C2780586882 @default.
- W4309586586 hasConceptScore W4309586586C38365724 @default.
- W4309586586 hasConceptScore W4309586586C41008148 @default.
- W4309586586 hasConceptScore W4309586586C50644808 @default.
- W4309586586 hasConceptScore W4309586586C62611344 @default.
- W4309586586 hasConceptScore W4309586586C66938386 @default.
- W4309586586 hasConceptScore W4309586586C81363708 @default.
- W4309586586 hasIssue "5" @default.
- W4309586586 hasLocation W43095865861 @default.
- W4309586586 hasLocation W43095865862 @default.
- W4309586586 hasOpenAccess W4309586586 @default.
- W4309586586 hasPrimaryLocation W43095865861 @default.
- W4309586586 hasRelatedWork W2731899572 @default.
- W4309586586 hasRelatedWork W2763109982 @default.
- W4309586586 hasRelatedWork W2971852391 @default.
- W4309586586 hasRelatedWork W3048867599 @default.
- W4309586586 hasRelatedWork W3156786002 @default.
- W4309586586 hasRelatedWork W3174059534 @default.
- W4309586586 hasRelatedWork W4229488483 @default.
- W4309586586 hasRelatedWork W4312417841 @default.
- W4309586586 hasRelatedWork W4321369474 @default.
- W4309586586 hasRelatedWork W2901868513 @default.
- W4309586586 hasVolume "11" @default.
- W4309586586 isParatext "false" @default.
- W4309586586 isRetracted "false" @default.
- W4309586586 workType "article" @default.