Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309593046> ?p ?o ?g. }
- W4309593046 abstract "We introduce a simulation-based, amortized Bayesian inference scheme to infer the parameters of random walks. Our approach learns the posterior distribution of the walks' parameters with a likelihood-free method. In the first step a graph neural network is trained on simulated data to learn optimized low-dimensional summary statistics of the random walk. In the second step an invertible neural network generates the posterior distribution of the parameters from the learned summary statistics using variational inference. We apply our method to infer the parameters of the fractional Brownian motion model from single trajectories. The computational complexity of the amortized inference procedure scales linearly with trajectory length, and its precision scales similarly to the Cram'er-Rao bound over a wide range of lengths. The approach is robust to positional noise, and generalizes to trajectories longer than those seen during training. Finally, we adapt this scheme to show that a finite decorrelation time in the environment can furthermore be inferred from individual trajectories." @default.
- W4309593046 created "2022-11-28" @default.
- W4309593046 creator A5045785542 @default.
- W4309593046 creator A5052899950 @default.
- W4309593046 creator A5067662281 @default.
- W4309593046 creator A5079283154 @default.
- W4309593046 creator A5080298742 @default.
- W4309593046 date "2022-11-22" @default.
- W4309593046 modified "2023-10-14" @default.
- W4309593046 title "Variational inference of fractional Brownian motion with linear computational complexity" @default.
- W4309593046 cites W187371506 @default.
- W4309593046 cites W1967071544 @default.
- W4309593046 cites W1984790459 @default.
- W4309593046 cites W1994894162 @default.
- W4309593046 cites W2005796586 @default.
- W4309593046 cites W2016533177 @default.
- W4309593046 cites W2019694618 @default.
- W4309593046 cites W2031753087 @default.
- W4309593046 cites W2048041195 @default.
- W4309593046 cites W2058946062 @default.
- W4309593046 cites W2062517214 @default.
- W4309593046 cites W2062546738 @default.
- W4309593046 cites W2070342495 @default.
- W4309593046 cites W2077098499 @default.
- W4309593046 cites W2078125149 @default.
- W4309593046 cites W2088215016 @default.
- W4309593046 cites W2091464855 @default.
- W4309593046 cites W2091469452 @default.
- W4309593046 cites W2091470385 @default.
- W4309593046 cites W2092939357 @default.
- W4309593046 cites W2105818147 @default.
- W4309593046 cites W2108899464 @default.
- W4309593046 cites W2122992893 @default.
- W4309593046 cites W2132858529 @default.
- W4309593046 cites W2137548675 @default.
- W4309593046 cites W2163922914 @default.
- W4309593046 cites W2238154366 @default.
- W4309593046 cites W2314015194 @default.
- W4309593046 cites W2511729348 @default.
- W4309593046 cites W2553507874 @default.
- W4309593046 cites W2614016827 @default.
- W4309593046 cites W2889918024 @default.
- W4309593046 cites W2899283552 @default.
- W4309593046 cites W2912926351 @default.
- W4309593046 cites W2919115771 @default.
- W4309593046 cites W2959696098 @default.
- W4309593046 cites W2960756190 @default.
- W4309593046 cites W2962751862 @default.
- W4309593046 cites W2962816980 @default.
- W4309593046 cites W2980085020 @default.
- W4309593046 cites W2992005611 @default.
- W4309593046 cites W3012496101 @default.
- W4309593046 cites W3012583842 @default.
- W4309593046 cites W3031514878 @default.
- W4309593046 cites W3041928797 @default.
- W4309593046 cites W3102531772 @default.
- W4309593046 cites W3139354032 @default.
- W4309593046 cites W3158401513 @default.
- W4309593046 cites W3171253577 @default.
- W4309593046 cites W3208295289 @default.
- W4309593046 cites W3213412084 @default.
- W4309593046 cites W3214440738 @default.
- W4309593046 cites W4220897115 @default.
- W4309593046 cites W4223570738 @default.
- W4309593046 cites W4229336522 @default.
- W4309593046 cites W4301819068 @default.
- W4309593046 doi "https://doi.org/10.1103/physreve.106.055311" @default.
- W4309593046 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36559393" @default.
- W4309593046 hasPublicationYear "2022" @default.
- W4309593046 type Work @default.
- W4309593046 citedByCount "4" @default.
- W4309593046 countsByYear W43095930462023 @default.
- W4309593046 crossrefType "journal-article" @default.
- W4309593046 hasAuthorship W4309593046A5045785542 @default.
- W4309593046 hasAuthorship W4309593046A5052899950 @default.
- W4309593046 hasAuthorship W4309593046A5067662281 @default.
- W4309593046 hasAuthorship W4309593046A5079283154 @default.
- W4309593046 hasAuthorship W4309593046A5080298742 @default.
- W4309593046 hasBestOaLocation W43095930462 @default.
- W4309593046 hasConcept C105795698 @default.
- W4309593046 hasConcept C107673813 @default.
- W4309593046 hasConcept C108819105 @default.
- W4309593046 hasConcept C112401455 @default.
- W4309593046 hasConcept C11413529 @default.
- W4309593046 hasConcept C121194460 @default.
- W4309593046 hasConcept C121332964 @default.
- W4309593046 hasConcept C121864883 @default.
- W4309593046 hasConcept C154945302 @default.
- W4309593046 hasConcept C159985019 @default.
- W4309593046 hasConcept C160234255 @default.
- W4309593046 hasConcept C192562407 @default.
- W4309593046 hasConcept C202444582 @default.
- W4309593046 hasConcept C204323151 @default.
- W4309593046 hasConcept C2776214188 @default.
- W4309593046 hasConcept C33923547 @default.
- W4309593046 hasConcept C41008148 @default.
- W4309593046 hasConcept C57830394 @default.
- W4309593046 hasConcept C96442724 @default.
- W4309593046 hasConceptScore W4309593046C105795698 @default.
- W4309593046 hasConceptScore W4309593046C107673813 @default.