Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309593051> ?p ?o ?g. }
- W4309593051 endingPage "1972" @default.
- W4309593051 startingPage "1972" @default.
- W4309593051 abstract "With the continuous development of industrial aquaculture and artificial intelligence technology, the trend of the use of automation and intelligence in aquaculture is becoming more and more obvious, and the speed of the related technical development is becoming faster and faster. Individual fish recognition could provide key technical support for fish growth monitoring, bait feeding and density estimation, and also provide strong data support for fish precision farming. However, individual fish recognition faces significant hurdles due to the underwater environment complexity, high visual similarity of individual fish and the real-time aspect of the process. In particular, the complex and changeable underwater environment makes it extremely difficult to detect individual fish and extract biological features extraction. In view of the above problems, this paper proposes an individual fish recognition method based on lightweight convolutional neural network (LIFRNet). This proposed method could extract the visual features of underwater moving fish accurately and efficiently and give each fish unique identity recognition information. The method proposed in this paper consists of three parts: the underwater fish detection module, underwater individual fish recognition module and result visualization module. In order to improve the accuracy and real-time availability of recognition, this paper proposes a lightweight backbone network for fish visual feature extraction. This research constructed a dataset for individual fish recognition (DlouFish), and the fish in dataset were manually sorted and labeled. The dataset contains 6950 picture information instances of 384 individual fish. In this research, simulation experiments were carried out on the DlouFish dataset. Compared with YOLOV4-Tiny and YOLOV4, the accuracy of the proposed method in fish detection was increased by 5.12% and 3.65%, respectively. Additionally, the accuracy of individual fish recognition reached 97.8%." @default.
- W4309593051 created "2022-11-28" @default.
- W4309593051 creator A5011861248 @default.
- W4309593051 creator A5038110791 @default.
- W4309593051 creator A5054544815 @default.
- W4309593051 creator A5061922920 @default.
- W4309593051 date "2022-11-22" @default.
- W4309593051 modified "2023-10-05" @default.
- W4309593051 title "LIFRNet: A Novel Lightweight Individual Fish Recognition Method Based on Deformable Convolution and Edge Feature Learning" @default.
- W4309593051 cites W1505623432 @default.
- W4309593051 cites W2194775991 @default.
- W4309593051 cites W2566800024 @default.
- W4309593051 cites W2601564443 @default.
- W4309593051 cites W2752782242 @default.
- W4309593051 cites W2770032835 @default.
- W4309593051 cites W2884585870 @default.
- W4309593051 cites W2891182582 @default.
- W4309593051 cites W2944464763 @default.
- W4309593051 cites W2945972832 @default.
- W4309593051 cites W2963163009 @default.
- W4309593051 cites W2969985801 @default.
- W4309593051 cites W2986670051 @default.
- W4309593051 cites W2997127923 @default.
- W4309593051 cites W3012374685 @default.
- W4309593051 cites W3014286955 @default.
- W4309593051 cites W3034552520 @default.
- W4309593051 cites W3093326439 @default.
- W4309593051 cites W3158715390 @default.
- W4309593051 cites W3162474807 @default.
- W4309593051 cites W3185762348 @default.
- W4309593051 cites W4206832536 @default.
- W4309593051 cites W4210447461 @default.
- W4309593051 cites W4226280501 @default.
- W4309593051 cites W4226435525 @default.
- W4309593051 cites W4229335310 @default.
- W4309593051 cites W4289343314 @default.
- W4309593051 cites W4292582552 @default.
- W4309593051 doi "https://doi.org/10.3390/agriculture12121972" @default.
- W4309593051 hasPublicationYear "2022" @default.
- W4309593051 type Work @default.
- W4309593051 citedByCount "1" @default.
- W4309593051 countsByYear W43095930512023 @default.
- W4309593051 crossrefType "journal-article" @default.
- W4309593051 hasAuthorship W4309593051A5011861248 @default.
- W4309593051 hasAuthorship W4309593051A5038110791 @default.
- W4309593051 hasAuthorship W4309593051A5054544815 @default.
- W4309593051 hasAuthorship W4309593051A5061922920 @default.
- W4309593051 hasBestOaLocation W43095930511 @default.
- W4309593051 hasConcept C111368507 @default.
- W4309593051 hasConcept C111919701 @default.
- W4309593051 hasConcept C127313418 @default.
- W4309593051 hasConcept C153180895 @default.
- W4309593051 hasConcept C154945302 @default.
- W4309593051 hasConcept C2909208804 @default.
- W4309593051 hasConcept C31972630 @default.
- W4309593051 hasConcept C36464697 @default.
- W4309593051 hasConcept C41008148 @default.
- W4309593051 hasConcept C505870484 @default.
- W4309593051 hasConcept C50644808 @default.
- W4309593051 hasConcept C52622490 @default.
- W4309593051 hasConcept C81363708 @default.
- W4309593051 hasConcept C86803240 @default.
- W4309593051 hasConcept C86909935 @default.
- W4309593051 hasConcept C98045186 @default.
- W4309593051 hasConcept C98083399 @default.
- W4309593051 hasConceptScore W4309593051C111368507 @default.
- W4309593051 hasConceptScore W4309593051C111919701 @default.
- W4309593051 hasConceptScore W4309593051C127313418 @default.
- W4309593051 hasConceptScore W4309593051C153180895 @default.
- W4309593051 hasConceptScore W4309593051C154945302 @default.
- W4309593051 hasConceptScore W4309593051C2909208804 @default.
- W4309593051 hasConceptScore W4309593051C31972630 @default.
- W4309593051 hasConceptScore W4309593051C36464697 @default.
- W4309593051 hasConceptScore W4309593051C41008148 @default.
- W4309593051 hasConceptScore W4309593051C505870484 @default.
- W4309593051 hasConceptScore W4309593051C50644808 @default.
- W4309593051 hasConceptScore W4309593051C52622490 @default.
- W4309593051 hasConceptScore W4309593051C81363708 @default.
- W4309593051 hasConceptScore W4309593051C86803240 @default.
- W4309593051 hasConceptScore W4309593051C86909935 @default.
- W4309593051 hasConceptScore W4309593051C98045186 @default.
- W4309593051 hasConceptScore W4309593051C98083399 @default.
- W4309593051 hasFunder F4320321001 @default.
- W4309593051 hasIssue "12" @default.
- W4309593051 hasLocation W43095930511 @default.
- W4309593051 hasLocation W43095930512 @default.
- W4309593051 hasOpenAccess W4309593051 @default.
- W4309593051 hasPrimaryLocation W43095930511 @default.
- W4309593051 hasRelatedWork W1964120219 @default.
- W4309593051 hasRelatedWork W2144059113 @default.
- W4309593051 hasRelatedWork W2146076056 @default.
- W4309593051 hasRelatedWork W2406522397 @default.
- W4309593051 hasRelatedWork W2742702720 @default.
- W4309593051 hasRelatedWork W2767651786 @default.
- W4309593051 hasRelatedWork W2811390910 @default.
- W4309593051 hasRelatedWork W2913302899 @default.
- W4309593051 hasRelatedWork W3003836766 @default.
- W4309593051 hasRelatedWork W4312376745 @default.