Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309595898> ?p ?o ?g. }
- W4309595898 endingPage "120308" @default.
- W4309595898 startingPage "120308" @default.
- W4309595898 abstract "Accurate and reliable battery capacity estimation has been a key challenge to technology advancement of safety–critical systems such as electric vehicles and stationary energy storage systems. In this work, we propose a new battery capacity estimation approach using relaxation voltage data collected for only 10 s. A strong correlation is first identified between the relaxation voltage and battery capacity over the entire lifetime. Based on this key enabling correlation, a convolutional neural network model is then developed to estimate capacity for batteries with different degradation paths. The generalizability of the model is assessed by 28 batteries and the average percentage test error on 8 validation cells is only 1.8%. The high predictive power of the relaxation voltage is rationalized by demonstrating the impacts of degradation mechanisms on the ionic and electronic transport properties as the battery ages, ultimately manifesting in the relaxation voltage curves. We also show that the proposed method has the potential to be extended to batteries with different chemistries." @default.
- W4309595898 created "2022-11-28" @default.
- W4309595898 creator A5043203530 @default.
- W4309595898 creator A5078975833 @default.
- W4309595898 date "2023-01-01" @default.
- W4309595898 modified "2023-10-14" @default.
- W4309595898 title "Battery capacity estimation using 10-second relaxation voltage and a convolutional neural network" @default.
- W4309595898 cites W1964935880 @default.
- W4309595898 cites W1966039250 @default.
- W4309595898 cites W1969910044 @default.
- W4309595898 cites W1979448554 @default.
- W4309595898 cites W2014862314 @default.
- W4309595898 cites W2029675786 @default.
- W4309595898 cites W2031163345 @default.
- W4309595898 cites W2044203336 @default.
- W4309595898 cites W2050232433 @default.
- W4309595898 cites W2052648206 @default.
- W4309595898 cites W2054808003 @default.
- W4309595898 cites W2094148708 @default.
- W4309595898 cites W2139858245 @default.
- W4309595898 cites W2147428031 @default.
- W4309595898 cites W2201263372 @default.
- W4309595898 cites W2259843108 @default.
- W4309595898 cites W2280718877 @default.
- W4309595898 cites W2316625071 @default.
- W4309595898 cites W2336117748 @default.
- W4309595898 cites W2531409750 @default.
- W4309595898 cites W2563343938 @default.
- W4309595898 cites W2624326750 @default.
- W4309595898 cites W2767663538 @default.
- W4309595898 cites W2767681895 @default.
- W4309595898 cites W2771396823 @default.
- W4309595898 cites W2772728162 @default.
- W4309595898 cites W2792067939 @default.
- W4309595898 cites W2796568833 @default.
- W4309595898 cites W2799437548 @default.
- W4309595898 cites W2808025896 @default.
- W4309595898 cites W2895147187 @default.
- W4309595898 cites W2908514443 @default.
- W4309595898 cites W2914840936 @default.
- W4309595898 cites W2921970606 @default.
- W4309595898 cites W2924382816 @default.
- W4309595898 cites W2943565918 @default.
- W4309595898 cites W2963691557 @default.
- W4309595898 cites W2967729973 @default.
- W4309595898 cites W2974625411 @default.
- W4309595898 cites W3028416073 @default.
- W4309595898 cites W3081277493 @default.
- W4309595898 cites W3092215607 @default.
- W4309595898 cites W3096459816 @default.
- W4309595898 cites W3109793512 @default.
- W4309595898 cites W3119025527 @default.
- W4309595898 cites W3129520764 @default.
- W4309595898 cites W4205105770 @default.
- W4309595898 cites W4229052262 @default.
- W4309595898 doi "https://doi.org/10.1016/j.apenergy.2022.120308" @default.
- W4309595898 hasPublicationYear "2023" @default.
- W4309595898 type Work @default.
- W4309595898 citedByCount "5" @default.
- W4309595898 countsByYear W43095958982023 @default.
- W4309595898 crossrefType "journal-article" @default.
- W4309595898 hasAuthorship W4309595898A5043203530 @default.
- W4309595898 hasAuthorship W4309595898A5078975833 @default.
- W4309595898 hasConcept C105795698 @default.
- W4309595898 hasConcept C119599485 @default.
- W4309595898 hasConcept C121332964 @default.
- W4309595898 hasConcept C127413603 @default.
- W4309595898 hasConcept C154945302 @default.
- W4309595898 hasConcept C15744967 @default.
- W4309595898 hasConcept C163258240 @default.
- W4309595898 hasConcept C165801399 @default.
- W4309595898 hasConcept C171146098 @default.
- W4309595898 hasConcept C18762648 @default.
- W4309595898 hasConcept C200601418 @default.
- W4309595898 hasConcept C26517878 @default.
- W4309595898 hasConcept C27158222 @default.
- W4309595898 hasConcept C2776029896 @default.
- W4309595898 hasConcept C2989104859 @default.
- W4309595898 hasConcept C33923547 @default.
- W4309595898 hasConcept C38652104 @default.
- W4309595898 hasConcept C41008148 @default.
- W4309595898 hasConcept C44154836 @default.
- W4309595898 hasConcept C50644808 @default.
- W4309595898 hasConcept C555008776 @default.
- W4309595898 hasConcept C62520636 @default.
- W4309595898 hasConcept C77805123 @default.
- W4309595898 hasConcept C78519656 @default.
- W4309595898 hasConcept C81363708 @default.
- W4309595898 hasConceptScore W4309595898C105795698 @default.
- W4309595898 hasConceptScore W4309595898C119599485 @default.
- W4309595898 hasConceptScore W4309595898C121332964 @default.
- W4309595898 hasConceptScore W4309595898C127413603 @default.
- W4309595898 hasConceptScore W4309595898C154945302 @default.
- W4309595898 hasConceptScore W4309595898C15744967 @default.
- W4309595898 hasConceptScore W4309595898C163258240 @default.
- W4309595898 hasConceptScore W4309595898C165801399 @default.
- W4309595898 hasConceptScore W4309595898C171146098 @default.
- W4309595898 hasConceptScore W4309595898C18762648 @default.