Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309600471> ?p ?o ?g. }
- W4309600471 abstract "Abstract Variant effect predictors (VEPs) provide a potential solution to the influx of variants of uncertain clinical significance produced by genome sequencing studies. However, the assessment of VEP performance is fraught with biases introduced by benchmarking against clinical observations. In this study, building on our previous work, we use independently generated measurements of protein function from deep mutational scanning (DMS) experiments for 26 human proteins to benchmark 55 different VEPs, while introducing minimum data circularity. The top VEPs are dominated by unsupervised methods including EVE, DeepSequence and ESM-1v, a new protein language model that ranked first overall. However, the strong performance of recent supervised VEPs, in particular VARITY, shows that developers are taking data circularity and bias issues seriously. We also assess the performance of DMS and unsupervised VEPs for discriminating between known pathogenic and putatively benign missense variants. Our findings are mixed, demonstrating that some DMS datasets perform exceptionally at variant classification, while others are poor. Notably, we observe a striking correlation between VEP agreement with DMS data and performance in identifying clinically relevant variants, with EVE, DeepSequence and ESM-1v performing best, further supporting the utility of DMS as an independent benchmark." @default.
- W4309600471 created "2022-11-28" @default.
- W4309600471 creator A5002238592 @default.
- W4309600471 creator A5010152179 @default.
- W4309600471 date "2022-11-22" @default.
- W4309600471 modified "2023-10-18" @default.
- W4309600471 title "Updated benchmarking of variant effect predictors using deep mutational scanning" @default.
- W4309600471 cites W1683278196 @default.
- W4309600471 cites W1966729619 @default.
- W4309600471 cites W1980370800 @default.
- W4309600471 cites W1987507232 @default.
- W4309600471 cites W2010595044 @default.
- W4309600471 cites W2011582941 @default.
- W4309600471 cites W2012427806 @default.
- W4309600471 cites W2017818880 @default.
- W4309600471 cites W2023350260 @default.
- W4309600471 cites W2035876071 @default.
- W4309600471 cites W2038473742 @default.
- W4309600471 cites W2044573154 @default.
- W4309600471 cites W2058487877 @default.
- W4309600471 cites W2060588922 @default.
- W4309600471 cites W2089335658 @default.
- W4309600471 cites W2099564671 @default.
- W4309600471 cites W2102461176 @default.
- W4309600471 cites W2104549677 @default.
- W4309600471 cites W2106306904 @default.
- W4309600471 cites W2111326065 @default.
- W4309600471 cites W2114029728 @default.
- W4309600471 cites W2125081100 @default.
- W4309600471 cites W2127346557 @default.
- W4309600471 cites W2129952088 @default.
- W4309600471 cites W2137886330 @default.
- W4309600471 cites W2139365100 @default.
- W4309600471 cites W2143210482 @default.
- W4309600471 cites W2145187337 @default.
- W4309600471 cites W2148105023 @default.
- W4309600471 cites W2154866190 @default.
- W4309600471 cites W2155845523 @default.
- W4309600471 cites W2160995259 @default.
- W4309600471 cites W2166637863 @default.
- W4309600471 cites W2167852161 @default.
- W4309600471 cites W2169783907 @default.
- W4309600471 cites W2195303995 @default.
- W4309600471 cites W2225726427 @default.
- W4309600471 cites W2245592118 @default.
- W4309600471 cites W2521967673 @default.
- W4309600471 cites W2535426958 @default.
- W4309600471 cites W2535595233 @default.
- W4309600471 cites W2561724945 @default.
- W4309600471 cites W2569442665 @default.
- W4309600471 cites W2612196455 @default.
- W4309600471 cites W2625862723 @default.
- W4309600471 cites W2727251566 @default.
- W4309600471 cites W2751686252 @default.
- W4309600471 cites W2774216375 @default.
- W4309600471 cites W2794121543 @default.
- W4309600471 cites W2801599089 @default.
- W4309600471 cites W2868860358 @default.
- W4309600471 cites W2883972171 @default.
- W4309600471 cites W2889874867 @default.
- W4309600471 cites W2890223884 @default.
- W4309600471 cites W2891643925 @default.
- W4309600471 cites W2891731267 @default.
- W4309600471 cites W2950629294 @default.
- W4309600471 cites W2953301805 @default.
- W4309600471 cites W2987965949 @default.
- W4309600471 cites W3004798288 @default.
- W4309600471 cites W3005126321 @default.
- W4309600471 cites W3008294336 @default.
- W4309600471 cites W3011567635 @default.
- W4309600471 cites W3012384638 @default.
- W4309600471 cites W3023683757 @default.
- W4309600471 cites W3029661147 @default.
- W4309600471 cites W3049151968 @default.
- W4309600471 cites W3081409951 @default.
- W4309600471 cites W3082311577 @default.
- W4309600471 cites W3094232626 @default.
- W4309600471 cites W3104285666 @default.
- W4309600471 cites W3107322429 @default.
- W4309600471 cites W3115988811 @default.
- W4309600471 cites W3123287010 @default.
- W4309600471 cites W3143107425 @default.
- W4309600471 cites W3153426628 @default.
- W4309600471 cites W3173285777 @default.
- W4309600471 cites W3175447509 @default.
- W4309600471 cites W3179485843 @default.
- W4309600471 cites W3181471647 @default.
- W4309600471 cites W3183354255 @default.
- W4309600471 cites W3191451220 @default.
- W4309600471 cites W3199639770 @default.
- W4309600471 cites W3201689665 @default.
- W4309600471 cites W3201915432 @default.
- W4309600471 cites W3209435229 @default.
- W4309600471 cites W4226190967 @default.
- W4309600471 cites W4283364403 @default.
- W4309600471 cites W4288050468 @default.
- W4309600471 doi "https://doi.org/10.1101/2022.11.19.517196" @default.
- W4309600471 hasPublicationYear "2022" @default.
- W4309600471 type Work @default.
- W4309600471 citedByCount "5" @default.