Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309603921> ?p ?o ?g. }
- W4309603921 endingPage "434" @default.
- W4309603921 startingPage "401" @default.
- W4309603921 abstract "Seasonal oscillations in the partial pressure of carbon dioxide (pCO2) in the Earth’s atmosphere, stronger in northern latitudes, are assumed to show that terrestrial photosynthesis exceeds respiration in summer, reducing the pCO2 in air but increasing its value in winter when respiration exceeds photosynthesis. We disagree, proposing that variation in the temperature of the surface mixing zone of seawater also reversibly regulates the pCO2 in air as a non-equilibrium process between air and seawater. We predict by thermal modelling that carbonate (CO32−) concentration in the surface mixed layer seawater declines in winter by conversion to bicarbonate with CaCO3 (calcite or aragonite) becoming more soluble and, proportional to the fall of temperature, calcite decalcifying more strongly, allowing more CO2 emission to air. Paradoxically, the increasing CO2 concentration in seawater favoring photosynthesis peaking in mid-summer declines simultaneously in autumn and early winter, forced by boundary layer fugacity into phase transfer to the atmosphere, supporting peak atmospheric pCO2 by late winter. These physico-chemical processes reverse in late winter and spring as seawater warms favoring calcification, fugacity forcing CO2 from the atmosphere as bicarbonate declines and carbonate increases, augmenting suspended calcite particles by several percent. Our numerical computation predicts that the larger range of thermal fluctuations in the northern hemisphere could reversibly favor absorption from air of more than one mole of CO2 per square meter in summer with calcite formation potentially augmenting shallow limestone reefs, despite falling pH, if there is a trend for increasing seawater temperature. Another assumption we challenge is that upwelling and advection from deeper water is the sole cause of increases in dissolved inorganic carbon (DIC) and alkalinity in surface waters, even in the southern hemisphere. Instead, some calcite dissolution is favored as water temperature falls near the surface. Standard enthalpy analysis of key DIC reactions indicates why this oscillation is more obvious in the northern hemisphere with seasonal variations in water temperature (ca. 7.1 °C) being almost twice those in the southern hemisphere (ca. 4.7 °C) with a greater depth of the surface mixing zone of seawater in the southern oceans. Questions remain regarding the relative rates of biotic and abiotic inorganic precipitation and dissolution of CaCO3 in the mixing zone. In summary, rapid biogenic calcification is favored by summer photosynthesis, but slower abiotic calcification is also more likely in warmer water. We conclude that the relative significance of terrestrial biotic and seawater abiotic processes in seawater on the seasonal oscillation in the atmosphere can only be assessed by direct seasonal measurements in seawater." @default.
- W4309603921 created "2022-11-28" @default.
- W4309603921 creator A5015189250 @default.
- W4309603921 creator A5039838014 @default.
- W4309603921 creator A5071239408 @default.
- W4309603921 creator A5082924617 @default.
- W4309603921 date "2022-11-17" @default.
- W4309603921 modified "2023-10-18" @default.
- W4309603921 title "A New Look at Physico-Chemical Causes of Changing Climate: Is the Seasonal Variation in Seawater Temperature a Significant Factor in Establishing the Partial Pressure of Carbon Dioxide in the Earth’s Atmosphere?" @default.
- W4309603921 cites W1174483205 @default.
- W4309603921 cites W1583623364 @default.
- W4309603921 cites W1679911946 @default.
- W4309603921 cites W1933521333 @default.
- W4309603921 cites W1964022881 @default.
- W4309603921 cites W1969753497 @default.
- W4309603921 cites W1971018981 @default.
- W4309603921 cites W1990205149 @default.
- W4309603921 cites W1995637607 @default.
- W4309603921 cites W1999570930 @default.
- W4309603921 cites W2001442432 @default.
- W4309603921 cites W2006113617 @default.
- W4309603921 cites W2024193997 @default.
- W4309603921 cites W2026897676 @default.
- W4309603921 cites W2029474942 @default.
- W4309603921 cites W2030604405 @default.
- W4309603921 cites W2035616341 @default.
- W4309603921 cites W2036509533 @default.
- W4309603921 cites W2039460399 @default.
- W4309603921 cites W2040551995 @default.
- W4309603921 cites W2044520523 @default.
- W4309603921 cites W2049078437 @default.
- W4309603921 cites W2054554448 @default.
- W4309603921 cites W2054754950 @default.
- W4309603921 cites W2058433393 @default.
- W4309603921 cites W2060097988 @default.
- W4309603921 cites W2065731998 @default.
- W4309603921 cites W2067285115 @default.
- W4309603921 cites W2071475990 @default.
- W4309603921 cites W2082161947 @default.
- W4309603921 cites W2085167193 @default.
- W4309603921 cites W2085968620 @default.
- W4309603921 cites W2087390324 @default.
- W4309603921 cites W2113215942 @default.
- W4309603921 cites W2113259580 @default.
- W4309603921 cites W2117091845 @default.
- W4309603921 cites W2120961536 @default.
- W4309603921 cites W2124482982 @default.
- W4309603921 cites W2124716103 @default.
- W4309603921 cites W2125776675 @default.
- W4309603921 cites W2276917095 @default.
- W4309603921 cites W2330059339 @default.
- W4309603921 cites W2487274185 @default.
- W4309603921 cites W2587428704 @default.
- W4309603921 cites W2737650853 @default.
- W4309603921 cites W2760689476 @default.
- W4309603921 cites W2788953871 @default.
- W4309603921 cites W2807540083 @default.
- W4309603921 cites W2884123295 @default.
- W4309603921 cites W2896901052 @default.
- W4309603921 cites W3015259543 @default.
- W4309603921 cites W3181590313 @default.
- W4309603921 cites W4236346411 @default.
- W4309603921 cites W4281788296 @default.
- W4309603921 cites W913271464 @default.
- W4309603921 doi "https://doi.org/10.3390/thermo2040028" @default.
- W4309603921 hasPublicationYear "2022" @default.
- W4309603921 type Work @default.
- W4309603921 citedByCount "1" @default.
- W4309603921 countsByYear W43096039212023 @default.
- W4309603921 crossrefType "journal-article" @default.
- W4309603921 hasAuthorship W4309603921A5015189250 @default.
- W4309603921 hasAuthorship W4309603921A5039838014 @default.
- W4309603921 hasAuthorship W4309603921A5071239408 @default.
- W4309603921 hasAuthorship W4309603921A5082924617 @default.
- W4309603921 hasBestOaLocation W43096039211 @default.
- W4309603921 hasConcept C111368507 @default.
- W4309603921 hasConcept C121332964 @default.
- W4309603921 hasConcept C127313418 @default.
- W4309603921 hasConcept C147789679 @default.
- W4309603921 hasConcept C153294291 @default.
- W4309603921 hasConcept C178790620 @default.
- W4309603921 hasConcept C185592680 @default.
- W4309603921 hasConcept C197248824 @default.
- W4309603921 hasConcept C19829342 @default.
- W4309603921 hasConcept C199289684 @default.
- W4309603921 hasConcept C2779002002 @default.
- W4309603921 hasConcept C2779866092 @default.
- W4309603921 hasConcept C2780191791 @default.
- W4309603921 hasConcept C2780659211 @default.
- W4309603921 hasConcept C39432304 @default.
- W4309603921 hasConcept C530467964 @default.
- W4309603921 hasConcept C65440619 @default.
- W4309603921 hasConcept C85084404 @default.
- W4309603921 hasConcept C91586092 @default.
- W4309603921 hasConceptScore W4309603921C111368507 @default.
- W4309603921 hasConceptScore W4309603921C121332964 @default.
- W4309603921 hasConceptScore W4309603921C127313418 @default.
- W4309603921 hasConceptScore W4309603921C147789679 @default.