Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309647527> ?p ?o ?g. }
- W4309647527 abstract "Abstract Treatment of blood smears with Wright’s stain is one of the most helpful tools in detecting white blood cell abnormalities. However, to diagnose leukocyte disorders, a clinical pathologist must perform a tedious, manual process of locating and identifying individual cells. Furthermore, the staining procedure requires considerable preparation time and clinical infrastructure, which is incompatible with point-of-care diagnosis. Thus, rapid and automated evaluations of unlabeled blood smears are highly desirable. In this study, we used color spatial light interference microcopy (cSLIM), a highly sensitive quantitative phase imaging (QPI) technique, coupled with deep learning tools, to localize, classify and segment white blood cells (WBCs) in blood smears. The concept of combining QPI label-free data with AI for the purpose of extracting cellular specificity has recently been introduced in the context of fluorescence imaging as phase imaging with computational specificity (PICS). We employed AI models to first translate SLIM images into brightfield micrographs, then ran parallel tasks of locating and labelling cells using EfficientNet, which is an object detection model. Next, WBC binary masks were created using U-net, a convolutional neural network that performs precise segmentation. After training on digitally stained brightfield images of blood smears with WBCs, we achieved a mean average precision of 75% for localizing and classifying neutrophils, eosinophils, lymphocytes, and monocytes, and an average pixel-wise majority-voting F1 score of 80% for determining the cell class from semantic segmentation maps. Therefore, PICS renders and analyzes synthetically stained blood smears rapidly, at a reduced cost of sample preparation, providing quantitative clinical information." @default.
- W4309647527 created "2022-11-29" @default.
- W4309647527 creator A5004768103 @default.
- W4309647527 creator A5016018855 @default.
- W4309647527 creator A5019821858 @default.
- W4309647527 creator A5046506193 @default.
- W4309647527 creator A5056127619 @default.
- W4309647527 creator A5070179681 @default.
- W4309647527 creator A5075283732 @default.
- W4309647527 date "2022-11-21" @default.
- W4309647527 modified "2023-10-10" @default.
- W4309647527 title "White blood cell detection, classification and analysis using phase imaging with computational specificity (PICS)" @default.
- W4309647527 cites W2013945481 @default.
- W4309647527 cites W2015526235 @default.
- W4309647527 cites W2047416239 @default.
- W4309647527 cites W2048710354 @default.
- W4309647527 cites W2105195754 @default.
- W4309647527 cites W2108598243 @default.
- W4309647527 cites W2109733187 @default.
- W4309647527 cites W2113821521 @default.
- W4309647527 cites W2114533780 @default.
- W4309647527 cites W2162070010 @default.
- W4309647527 cites W2302302587 @default.
- W4309647527 cites W2346039638 @default.
- W4309647527 cites W2517760358 @default.
- W4309647527 cites W2604600002 @default.
- W4309647527 cites W2762741128 @default.
- W4309647527 cites W2772796218 @default.
- W4309647527 cites W2791089379 @default.
- W4309647527 cites W2808298204 @default.
- W4309647527 cites W2884160046 @default.
- W4309647527 cites W2890936603 @default.
- W4309647527 cites W2892479404 @default.
- W4309647527 cites W2895642525 @default.
- W4309647527 cites W2908960908 @default.
- W4309647527 cites W2909860570 @default.
- W4309647527 cites W2911741036 @default.
- W4309647527 cites W2912290085 @default.
- W4309647527 cites W2946363866 @default.
- W4309647527 cites W2953802183 @default.
- W4309647527 cites W2957750684 @default.
- W4309647527 cites W2963073614 @default.
- W4309647527 cites W2979482445 @default.
- W4309647527 cites W2980978229 @default.
- W4309647527 cites W2989014648 @default.
- W4309647527 cites W2991339597 @default.
- W4309647527 cites W3006439372 @default.
- W4309647527 cites W3007823945 @default.
- W4309647527 cites W3008063097 @default.
- W4309647527 cites W3008466065 @default.
- W4309647527 cites W3028092061 @default.
- W4309647527 cites W3034971973 @default.
- W4309647527 cites W3087696335 @default.
- W4309647527 cites W3098491829 @default.
- W4309647527 cites W3103629848 @default.
- W4309647527 cites W3104050923 @default.
- W4309647527 cites W3105376082 @default.
- W4309647527 cites W3112158685 @default.
- W4309647527 cites W3112580371 @default.
- W4309647527 cites W3134434864 @default.
- W4309647527 cites W3191728126 @default.
- W4309647527 cites W3198053940 @default.
- W4309647527 cites W4211105988 @default.
- W4309647527 cites W4240691888 @default.
- W4309647527 cites W906421731 @default.
- W4309647527 doi "https://doi.org/10.1038/s41598-022-21250-z" @default.
- W4309647527 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36414631" @default.
- W4309647527 hasPublicationYear "2022" @default.
- W4309647527 type Work @default.
- W4309647527 citedByCount "4" @default.
- W4309647527 countsByYear W43096475272023 @default.
- W4309647527 crossrefType "journal-article" @default.
- W4309647527 hasAuthorship W4309647527A5004768103 @default.
- W4309647527 hasAuthorship W4309647527A5016018855 @default.
- W4309647527 hasAuthorship W4309647527A5019821858 @default.
- W4309647527 hasAuthorship W4309647527A5046506193 @default.
- W4309647527 hasAuthorship W4309647527A5056127619 @default.
- W4309647527 hasAuthorship W4309647527A5070179681 @default.
- W4309647527 hasAuthorship W4309647527A5075283732 @default.
- W4309647527 hasBestOaLocation W43096475271 @default.
- W4309647527 hasConcept C108583219 @default.
- W4309647527 hasConcept C142724271 @default.
- W4309647527 hasConcept C151730666 @default.
- W4309647527 hasConcept C153180895 @default.
- W4309647527 hasConcept C154945302 @default.
- W4309647527 hasConcept C2777522853 @default.
- W4309647527 hasConcept C2778048844 @default.
- W4309647527 hasConcept C2779343474 @default.
- W4309647527 hasConcept C3017819844 @default.
- W4309647527 hasConcept C41008148 @default.
- W4309647527 hasConcept C71924100 @default.
- W4309647527 hasConcept C81363708 @default.
- W4309647527 hasConcept C86803240 @default.
- W4309647527 hasConcept C89600930 @default.
- W4309647527 hasConceptScore W4309647527C108583219 @default.
- W4309647527 hasConceptScore W4309647527C142724271 @default.
- W4309647527 hasConceptScore W4309647527C151730666 @default.
- W4309647527 hasConceptScore W4309647527C153180895 @default.
- W4309647527 hasConceptScore W4309647527C154945302 @default.
- W4309647527 hasConceptScore W4309647527C2777522853 @default.